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The main objective of this paper is to examine in some detail the dynamics and 
fluctuations in the critical situation for a simple model exhibiting bistable 
macroscopic behavior. The model under consideration is a dynamic model of a 
collection of anharmonic oscillators in a two-well potential together with an 
attractive mean-field interaction. The system is studied in the limit as the 
number of oscillators goes to infinity. The limit is described by a nonlinear 
partial differential equation and the existence of a phase transition for this 
limiting system is established. The main result deals with the fluctuations at the 
critical point in the limit as the number of oscillators goes to infinity. It is 
established that these fluctuations are non-Gaussian and occur at a time scale 
slower than the noncritical fluctuations. The method used is based on the 
perturbation theory for Markov processes developed by Papanicolaou, Stroock, 
and Varadhan adapted to the context of probability-measure-valued processes. 
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1. INTRODUCTION AND DESCRIPTION OF THE RESULTS 

O n e  of the  p r inc ipa l  p r o b l e m s  of  s tochas t i c  sys tem t h e o r y  is to desc r ibe  the  

b e h a v i o r  of  a sys tem wh ich  is c o m p r i s e d  of  a la rge  n u m b e r  of  i n t e r a c t i n g  

subsys tems.  I n  a d d i t i o n  an  i m p o r t a n t  f ea tu re  of  m o s t  sys tems  of  this type  is 

a degree  of  r a n d o m n e s s  i n h e r e n t  in the  m i c r o s c o p i c  subsys tems .  T h e  
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macroscopic state of the system not only is a manifestation of the statistical 
behavior of the ensemble of interacting subsystems but also prescribes the 
environment experienced by the individual subsystems thus creating a 
feedback control loop. As a consequence of this feedback control mecha- 
nism, the random perturbations at the microscopic level are compensated 
for and the macroscopic system can exhibit a wide range of coherent 
self-regulating behavior. However in certain special circumstances it is 
possible for the microscopic fluctuations to become amplified by collective 
action of the microscopic subsystems and to become important at macro- 
scopic scales. The theoretical study of such "critical" phenomena is compli- 
cated by the fact that the distinction between macroscopic and microscopic 
breaks down in this case and the macroscopic system itself becomes 
intrinsically stochastic. The main objective of this paper is to investigate 
this phenomenon in the context of a simple model which can exhibit 
bistable macroscopic behavior. The model under consideration is a dy- 
namic model of a collection of anharmonic oscillators with a bistable 
potential together with an attractive mean-field-like interaction. 

To describe the system we begin with a single anharmonic oscillator 
subject to a stochastic disturbance. It is described by the solution of an It6 
stochastic differential equation 

dx(t) = [ -x3( t )  + x(t) l  dt + odw(t) (1.1) 

where o > 0 and (w(t) : t >>. 0} is a standard Wiener process. The solution 
{x( t ): t  >1 0} of Eq. (1.1) is a Markov process with associated Fokker- 
Planck equation, 

Op(t; x, y)/Ot = �89 O~o(t; x, y)/Oy 2 - O/Oy[( __y3 -i- .V)p(t; X, y)] (1.2) 

together with the initial condition 

1}~ f f (y)p(  t; x, y) dy= f (x)  (1.3) 

for every bounded continuous function f. The connection between the 
process x(t) and the solution of the Fokker-Planck equation p(t;, .,) is 
given by 

E[ f(x(t))lx(O) = x] = f f(y)p(t; x, y)ay (1.4) 

for all bounded continuous functions f where E[. I" ] denotes the condi- 
tional expectation. This one-particle system has been extensively studied 
beginning with the work of Kramers in 1940 (cf. Dekker, (~2) Gardner, (24) 
Schuss(5~ Although the potential has minima at the points + l, the 
particle can escape from either potential well due to the stochastic fluctua- 
tions. In fact the system is ergodic with unique equilibrium distribution 
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given by the probability density function 

p (x )  = Z - % x p [  O-2(X 2-  Ix4)] (1.5) 

where Z is a normalization constant. 
For a system of N independent oscillators of this type, the distribution 

of oscillators in the two wells will approximate the distribution (1.5) when 
N is large for all but a small set of exceptional times. However this need not 
be true if there is an interaction among the oscillators. In this paper we 
consider the effect of a "mean-field-like" interaction in which each oscilla- 
tor interacts with every other oscillator. The model is given by the system of 
It6 stochastic differential equations: f o r j  = 1 . . . . .  N, 

dxj = ( -  x] + xj)dt + adwj(t) - O(xj - ~)dt (1.6) 

where ~ ( t ) :=  N-l~y=lxj( t )  and 0 > 0. The last term in (1.6) can be 
viewed as an interaction between subsystems which creates a tendency for 
the subsystems to relax toward the center of gravity of the ensemble. Thus 
the system provides a simple example of a cooperative interaction. 

The system (1.6) has been used to model muscle contraction (cf. 
Kometani and Shimizu (34)) and similar models have been proposed in 
chemical kinetics (Horsthemke et a/.(28)), statistical physics (cf. Haken(26)), 
and large economic systems (Aoki(2)). Theoretical studies of mean-field-like 
models have been carried out by Kipnis, (33) and Tanaka and Hitsuda (55). 

The solution of the system of N stochastic differential equations (1.6) 
is a Markov process associated with the Fokker-Planck equation: 

N N 

OP(t;x,Y)l Ot= la2 E 02p(t;x,Y)IOY/- E 313~.[ ( -y /  + yj)p(t;x,y)] 
j=l j=l 

N 
+ O N - I N  Z 3/3Yj[(Yj--YK)p(t;x,Y)] ( 1 . 7 )  

j=l k~j 

where y = (Yl . . . . .  Yn)- This system is also ergodic and has a unique 
invariant (equilibrium) probability measure given by the probability density 
function 

N 

pu(X) ---- ZN 'exp[  fiH,(x, . . . .  , XN)]" I-[ O(Xj) (1.8) 
j = l  

where fi = 2 / a  2, and 
N N 

HI(X 1 . . . . .  XN) = (O/2N) " ~ ~ xjx k 
j=1~=1 

p(xj) = exp{ o-2[  (1 - 0 ) 4 -  �89 } 
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and Z N is a normalizing constant. The Gibb's distribution (1.8) is the 
analog of the q~4-Euclidean lattice field on Z d. In the latter case the 
interaction energy term HI(.) is replaced by 

H(xl, , xN) = Z E X Xk 
j~AkEA 

where A is a finite box in Z d, Jjk is a function of the Euclidean distance 
]]- kl between j and k, and /9 > 0 (the thermodynamic limit involves 
letting A~Zd). If Jjk ~ 0, the interaction is said to be ferromagnetic. (See 
Glimm and Jaffe (2s) for a complete discussion of this model.) Therefore the 
equilibrium distribution (1.8) is a ferromagnetic Gibbs distribution. This 
fact is exploited in our analysis by the use of some standard ferromagnetic 
inequalities. 

In the limit N--> co, the system (1.5) exhibits a phase transition; this 
has been analyzed theoretically and demonstrated by numerical simulation 
in a paper of Desai and Zwanzig. (13) For fixed 0 > 0, there exists a critical 
value o c such that the behavior of the system for a > o c and o < o c are 
qualitatively different. For o > (L, the time required for the system to 
approach equilibrium (with a symmetric distribution) remains bounded in 
the limit N--> oc. However for o < oc, the time required for the system 
which is started with a predominance of oscillators in one well to reach 
equilibrium goes to infinity as N--> ~ .  

In order to make these statements precise we now formulate the law of 
large numbers for the system (1.6). When N is large the state of the system 
can most conveniently be described in terms of the empirical distribution of 
particles. In other words we consider the empirical process: for each Borel 
setA C R t, 

N 

XN(t;A) := N-1 E 1A[xj(t)I (1.9) 
j = l  

where 1 a ( . )  is the indicator function of the set A. In other words, X N (t; A) 
is simply the proportion of particles in the set A at time t. Then XN(', ") is a 
Markov process with state space M,(R 1), the space of probability measures 
on R ~. The first main result is that for large N, XN(t, ") evolves in an 
approximately deterministic fashion and that the evolution is described by 
a nonlinear partial differential equation. 

Result I: The Law of Large Numbers. As N---> oe, XN(', .) converges 
in the sense of weak convergence of measure-valued stochastic processes to 
the process (X~( t ) :  t > 0). X~(t) is a deterministic probability-measure- 
valued process given by the probability density function p(t; .) which 
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satisfies the nonlinear partial differential equation: 

Op(t; . ) lOt= �89 2 -  O/0x(  [(1 - O)x - x3]p( t ;x)}  

- Oa(t). Op(t; x) /Ox (1.10) 
where 

= fxp( t ;  x) dx a( t )  

An equilibrium probability distribution for this deterministic evolution is 
given by the solution of the pair of equations 

(1.11) F 
a = m(a) = J x p ( x ) d x  

Therefore for every solution of the equation m(a)= a there is an equilib- 
rium distribution. Since m (0) = 0, there is always one equilibrium distribu- 
tion with mean zero. 

Result H: Existence of a Phase Transition. There exists ~c, 0 < o C 
< o~ such that for o/> ac, 0 is the only solution of the equation m(a) = a. 
In this case the unique equilibrium distribution is given by 

po(x) = Z - l  . e x p ( o - 2 [ ( 1 -  O)x2 -  �89 (1.12) 

On the other hand for o < oc, there exists nonzero solutions + a 0 of the 
equation m(a) = a. In this case there exist equilibrium distributions 

p+_ao(x)=Za~l'exp(o-2[(1-O)x2-�89 (1.13) 

This argument for the existence of a phase transition is similar to the 
classical argument for the existence of a ferromagnetic phase transition 
using the Curie-Weiss model. However it had been thought that the 
fluctuations for mean-field-type models are "trivial" in that they always 
lead to classical fluctuation results with central limit normalization and 
Gaussian limits. However in an important series of papers Ellis and 
Newman (16'18'~9) have demonstrated that in fact mean-field-type models 
can exhibit a rich probabilistic structure. Employing ideas from the theory 
of large deviations they showed that the critical fluctuations of the order 
parameter can have non-Gaussian limits in the N ~ oe limit. In this paper 
the study of the critical mean-field-like model is extended to include both 
critical dynamics and fluctuations in the full empirical probability distribu- 
tion. This is possible due to the simplicity of this type of model; the 
analogous questions for c)4-Euclidean lattice fields which have the added 
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complexity of geometrical structure remain open in low dimensions (cf. 
Aizenmann (1)). 

Result III: Fluctuation Theorem for o > %. According to the law of 
large numbers, for large N the empirical measure evolves very close to the 
deterministic evolution given by X~(t, .). In order to investigate the fluctu- 
ations from the ideal limiting evolution we consider the fluctuations nor- 
malized by the usual central limit scaling: 

Yu(t, .) := N1/2[Xu(t, ") - X~(t, .)] (1.14) 

The "central limit theorem" for the system (1.6) states that: as N --> ~ ,  

YN(', ")-~ Y(', ") (1.15) 

in the sense of weak convergence of probability measures on C([0, r J ' )  
where J '  denotes the space of tempered Schwartz distributions of R i. The 
generalized process Y( . , . )  is Gaussian and is given by the solution of the 
linear stochastic evolution equation 

OY/i)t = J *  Y+ W'(t) (1.16) 

where (W(t)  : t > 0) is a Gaussian Markov process in J '  with covariance: 

2 t # t Cov((W(t),q~},{W(t),+})= o s f O(x)+ (x)X~(s,x)dxds (1.17) 

for every pair 0, + in J ,  the space of infinitely differentiable functions 
which are rapidly decreasing at infinity (cf. Glimm and Jaffe, (25) p. 53). 
The operator J *  is given by the linearization of the Fokker-Planck 
operator at the measure X~(t, .), that is, 

~2'~* Y= 102 82y/Sx2 - O /Sx ( [ (l - O)x - x31 Y} 

-o[f yx~(t,y)dy]OY/Ox-O<Y,y>aX~/ax (1.18) 

For the equilibrium situation J *  is defined by (1.18) with X~(t,  .) re- 
placed by P0(') and l/V(t) is then a Wiener process in J ' .  [In the 
Expression (1.17) for the covariance, X~(t, .) is replaced by P0(').] In this 
case the limit process g ( t , - )  is a generalized Ornstein-Uhlenbeck process 
(cf. Holley and Stroock(27)). 

There is an equivalent formulation of (1.15) which brings out the 
relationship with the classical central limit theorem. For simplicity we state 
it only for a fixed time t > 0. Given ~ E J ,  as N ~ m, 

N 

N-l~2 2 [eo(xj(t))- f q,(x)X~(t,x)dx]+{Y(t),eo} (in distribution) 
j = l  t- 

(1.19) 
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where (Y(t),q~) is a Gaussian random variable whose variance can be 
computed from (1.16) and (1.17) and with mean zero. In particular this 
implies that the variance of the sum 

N 

 (xAt)) (1.20) 
j = l  

grows linearly in N, a property which is characteristic of "weakly depen- 
dent" random variables (cf. Cassandro and Jona-Lasinio(6)). 

For o > o~ the linearized operator S *  is stable, that is ~0 = 0 is a 
simple eigenvalue and all other eigenvalues ~n < 0. This implies that the 
linear stochastic evolution equation (1.16) has an equilibrium state which is 
given by a generalized Gaussian random field which in turn describes the 
limiting fluctuations in the empirical measure process in the N--> ~ limit. 
However at o = or 0 becomes a double eigenvalue for the linearized 
operator J *  and there exists a second eigenfunction q0(')- This implies 
that the linear stochastic evolution equation cannot have an equilibrium 
state and thus cannot serve as an approximation to the equilibrium fluctua- 
tions of the original system. In order to obtain a limit theorem which 
describes the fluctuations in the empirical measure process in the N---> 
limit at the critical point o c, it is necessary to make the following rescaling: 

Uu(t, .) := NI/4IXN(N1/2t, .) -po(x)dx]  (1.2l) 

There are two notable features of this rescaling. The first is that replace- 
ment of the factor N 1/2 in (1.14) by N 1/4; this implies that the fluctuations 
are of the order of N 1/4 for large N and are thus at a larger scale than 
noncritical fluctuations which occur at the scale of N -  1/2. This is equiva- 
lent to the statement that the variance of the sum 

N 

ep(xj(t)) (in steady state) (1.22) 
j=l  

grows as N 3/2 rather than linearly in N implying that the random variables 
{xj(t)) are strongly dependent in equilibrium at the critical point or The 
second new feature is that the fluctuation process must be observed in "fast 
time" N ~/2t; this is due to the phenomena of "critical slowing down" and 
means that the fluctuations persist over long time scales. 

Result IV: Critical Fluctuations. Let o = o c. Then as N---> ~ ,  

UN(., . ) ~  Z ( . ,  .) (t.23) 

in the sense of weak convergence of probability measures on C([0, m), 
M -+ (R 1)) where 

Z(t, dx) = z( t) .  qo(x)dx (1.24) 
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and z(t) is the solution of the It6 stochastic differential equation 

dz( t )=-cz3( t )d t+o,  dw(t), c > 0 ,  o , > 0  (1.25) 

and (w(t):t >/0) is a standard one-dimensional Wiener process. 
The limit theorem given by (1.23)-(1.25) implies that the critical 

fluctuations in the empirical process are coherent, that is, the entire 
empirical distribution process is driven or slaved by the one-dimensional 
process z(t). This is in sharp contrast to the fluctuations observed in the 
noncritical case in which the fluctuations are described by a generalized 
Gaussian random field. This is a manifestation of the "macroscopic" nature 
of the critical fluctuations. 

The signed-measure-valued process Z( . )  has an equilibrium distribu- 
tion, namely, 

Z~(dx) = ~ . qo(x)dx (1.26) 

where ~ is a random variable with probability density function 

p(x) = Z-texp(-cx4/2o 2) (1.27) 

where Z 1 is a normalizing factor. Thus we see that the limiting critical 
fluctuations for the mean-field-type model (1.6) are non-Gaussian. The 
distribution (1.27) agrees with that obtained by Ellis and Newman (16'18'19) 
for the order parameter. 

The results described above have been derived for the special model 
(1.6). However a careful analysis of the proofs reveal that the results remain 
valid for a wide range of similar models (for example with different self 
interactions). In order for the Results III and IV to be true three basic 
conditions must be met: 

(i) the existence of a bifurcation point o c; 
(ii) the linearized operator J *  is stable for o > o C, and exhibits 0 as 

a double eigenvalue at % with eigenfunction q0, 
(iii) the quadratic term (in the Taylor expansion of the nonlinear 

Fokker-Planck equation) stabilizes the critical fluctuations. 
It is reasonable to conjecture that conditions (i)-(iii) are valid for a 

large class of stochastic systems with "mean-field-type" interaction and 
therefore the limiting critical fluctuations will have the form given by (1.26), 
(1.27). This observation illustrates the phenomenon of "universality" that is 
widely discussed in the statistical physics literature (cf. Ma, (38) Lang, (36) 
Sinai(53)). This idea is a generalization of the central limit theorem and 
states that the critical fluctuations arising from strongly dependent random 
systems must fall into one of relatively small family of "universal" probabil- 
ity laws. 

Exact statements of the results and the major steps in the proofs are 
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presented in succeeding sections. Two technical proofs which do not 
contribute to the development of the major themes are relegated to Appen- 
dixes A and B. The proof of the main result of this paper (Result IV) is 
based on the Papanicolaou, Stroock, Varadhan perturbation theory and 
methodology. (46) A detailed discussion of this method and its application to 
the appropriate infinite-dimensional diffusion process is presented in Sec- 
tion 4.2. 

2. THE N-PARTICLE SYSTEMS AND MEAN-FIELD LIMIT 

2.1. The N-Particle Markov Processes 

Consider the evolution of N identical interacting subsystems described 
by the system of It6 stochastic differential equations: for i = 1 . . . . .  N, 

dxi(t  ) = a l (x i ( t ) )d t  + a2(x(t)) idt  + o(x i ( t ) )dwi ( t  ) (2.1) 

x~(O) = X~,o ~ R 1 

where 
N 

a2(x)~= N - ' .  ~ ,  v ( x  i -  xj) 
j = l  

The coefficient al( . )  represents the self-interaction, a2(-) represents the pair 
interaction, {D(t):  t > 0, j = 1, . . . ,  N} is a system of independent stan- 
dard Wiener processes, and the coefficient o(.)  determines the internal 
noise characteristics of the individual subsystems. 

Under the assumptions: for some 0 ~< K < m, 

at(x,)2+ a2(x)~+ O2(Xi) • K(1 + Ixl 2) 
(2.2) 

[o(Xi) -- O(yi )  I + la l ( x i )  -- al(yi) [ + ] a2 (x ) i -  a2(Y)i [ ~< KIx - y] 

the fundamental result of It6 guarantees that the system (2.1) has a unique 
strong solution (cf. lkeda and Watanabe(29)). 

For the system of anharmonic oscillators (1.6), o2(xi)= 0 2, v ( y ) =  
- Oy, al(xi) = - x  3 + x i. Note that the coefficient a l ( ' )  does not satisfy the 
condition (2.2). However the fact that the system (1.6) also has a unique 
strong solution is established using a truncation argument and the fact that 
the solution is nonexplosive (cf. McKean (42) or Ikeda and Watanabe(29)). 
The solution of (1.6) is characterized as a Markov process as follows. 

Theorem 2.1.1. The solution of the system of stochastic differential 
equations (1.6) is a Markov diffusion process on R N. The domain D(AN) of 
the infinitesimal generator A N contains C~(RN),  the space of twice con- 
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tinuously differentiable functions with compact support in R N. 
C2(RN), 

N 
ANf(x ) -- �89 2 ~ Oy(x)/Oxf 

j = l  

+j=~,,, [ ( 1 -O)x j - x j3 ]+ON  - ' .  x k ~f(x)/~xj 

Dawson 

For f 

(2.3) 

Proof. For this and other basic facts concerning stochastic differen- 
tial equations and Markov diffusion processes, refer to McKean, (42) Ikeda 
and Watanabe, (29) and Stroock and Varadhan. (54) m 

In addition the solution of the system (1.6) has a smooth transition 
probability density function { p(t; x, y): t > 0, x, y E R N} that satisfies the 
Fokker-Planck equation: 

~p(t; x , . ) /~t  = A~p(t; x, .) (2.4) 

where A} is the adjoint of the infinitesimal generator A N [cf. Eq. (1.7)]. 

2.2. The Equilibrium Gibbs Distribution 

Consider the energy functional 

/-/(xl,..., xN) = / 6 ( x , . . . ,  xN) + t /s (x , , . . . ,  XN) 
where 

(2.6) 

N N 

H1(x 1 . . . . .  XN) = (O/2N)" ~ ~ xjx k 
j = l k = l  

N 

.+(x, . . . . .  xN)=+ 2 [ ( 1 - o ) 4 - + 4 ]  
j = l  

The Gibbs distribution associated with the energy functional H( . )  and the 
inverse temperature fi = 2//a 2 is given by the probability density function 

pN(X) = Z N ' '  exp[ fill(x, . . . . .  XN) ] (2.7) 

where Z N is a normalizing factor. 

Theorem 2.2. The solution of the system (1.8) of stochastic differen- 
tial equations is a Markov process in R N with unique invariant probability 
measure given by the Gibbs distribution (2.7). Furthermore the correspond- 
ing stationary stochastic process is ergodic and reversible in the sense that 
the semigroup (Tt: t  >/O} induced on LZ(RN;pN) by the Markov process 
is self-adjoint. 
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Proof. By direct calculation, 

A~vPu (x) dx = 0 (2.8) 

where A~ is the adjoint of the infinitesimal generator A N . This implies (cf. 
Varadhan (58)) that pN(x)dx is an invariant measure. The ergodicity of the 
process and the resulting uniqueness of the invariant probability measure 
follows from a result of Khasminskii (32) (cf. Varadhan(SS)). The self- 
adjointness of the infinitesimal generator of the semigroup {Tt : t  >/0} 
acting o n  L2(RN; PN), the space of functions o n  _R u which are square 
integrable with respect to the measure PN, is a consequence of the represen- 
tation (3.56) (also refer to Fritz (23) for a discussion of reversibility). [] 

2.3. Reformulation in Terms of Probability-Measure-Valued 
Processes 

In order to study the limiting behavior of the system (1.8) as the 
number of oscillators N goes to infinity, we reformulate the N-particle 
processes in the framework of probability-measure-valued processes. We 
begin by formulating the mathematical framework for studying probability- 
measure-valued diffusions. 

Let MI(R 1) denote the set of probability measures on R 1, furnished 
with the topology of weak convergence. MI(R 1) serves as the state space for 
the family of probability-measure-valued processes. Let ~ = C([0, oo), 
MI(R 1)), the space of continuous functions from [0, m) into MI(R 1). We 
consider the canonical process X:[0,  o o ) o  MI(R 1) defined by X(t,~o,A) 
:-- w(t,A) for w ~ ~, t/> 0 and Borel set A C R 1. The distribution of a 

probability-measure-valued diffusion process is determined by a mapping 
/~ ~ P, from MI(R 1) into the space of probability measures on a with the 
initial condition P~[X(0) =/~] = 1. 

The applicability of the theory of probability-measure-valued processes 
to the system (1.8) is a consequence of the "exchangeability" of the system. 
We next define this concept and use it to obtain the basic probability- 
measure-valued process. 

A stochastic system {x j ( . ) : j  --- 1 . . . . .  N} is said to be exchangeable if 
the probability law of {xj(-) : j  = 1 . . . . .  N} is identical to that of (x~(j) :j 
= 1 . . . . .  N } for every permutation ~r of 1 . . . . .  N. 

I.emma 2.3.1. Let ktN be an exchangeable probability measure on 
R N. Let {xj(t):j  = 1, . . . ,  N} denote the solution of the system (1.8) with 
random initial condition given by/x N. For t >/0, let 

N 

XN(t,A ) := N -1.  ~ 1A(xj(t)) (2.9) 
j = l  
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where 1A(. ) denotes the indicator function of the Borel set A C R 1. Then 
XN(t, .) is a probability-measure-valued Markov diffusion process. 

Proof. We first observe that from the exchangeability of the system 
of Wiener processes ( wj(. ) : j  = 1 . . . . .  N }, the exchangeability assumption 
made on the initial distribution and the symmetry built into the coeffi- 
cients, it follows that the system {xj( t ): t  >1 0, j - -  1 . . . . .  N )  is exchange- 
able. As a consequence of this (cf. Dawson and Hochberg (11)), X u ( t , . )  is a 
probability-measure-valued process. The Markov property and sample path 
continuity follow from that of {xj(-) : j  = 1 . . . . .  N}. [] 

The probability-measure-valued process XN(., .) is known as the N- 
particle empirical measure process. It can also be characterized as the unique 
solution of a "martingale problem" on ~2. We now briefly describe this 
alternate formulation. 

A martingale problem on f~ is described by a pair (L, D(L)), where L is 
a linear operator defined on the linear subspace D(L) of C(Ml(R 1)). A 
solution is the distribution {P~:/~ ~ MI(R1)} of a probability-measure- 
valued stochastic process which satisfies the condition 

for every ~ ~ D(L), ~(X(t ) )  -~ tL tp (X(s ) )ds  
J U  

(2.10) 
is a P~-martingale for each/~ ~ Ml(R 1). 

The basic result due to Stroock and Varadhan (54) is that a solution to a 
martingale problem which is unique defines a Markov diffusion process 
with state space MI(R l) (also refer to Ethier and Kurtz(22)). 

We next present the martingale problem associated with the empirical 
measure process and describe the action of the operator G u on two classes 
of functions. Let D o denote the family of functions on MI(R 1) of the form 
Ff,~(tz) = f ( (  t ~, 0)) where ( #, 0)  := f0(x)/~ (dx), f ~ Cb2(R 1), the space of 
functions on R 1 with bounded continuous second derivatives and ~, 
E C~(R 1). For Ff, q, E Do,/z N - -  1 U = " ~ j =  l xj where 8xj is a unit mass at xj, 
let 

GXFf,~,( I x) = �89 ( tx, 0))(  t~, O2eO/ox2) + f ' (  ( t ~, 0) )( t~, ( - x3 + x) Od~/Ox) 

+ (o2/2N ) f " ( (  I z , 'I'))( l -t , (30/ax)  2) 

-os'((.,o>)[ f f (x- y)(oo/ox).(.x).(+)] (2.11) 

Let D 1 denote the family of functions on M1(R 1) of the form 

= f R j ( x l  . . . . .  x,)~, (dx), where /zn (dx) =/~ (dx1) . . # (dxn) FS( 
(2.12) 

where f E C0~(R'), the space of C ~~ functions on R" which vanish at 
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infinity. For Ff E D1, let 
n 

• f ( x  1 . . . . .  x,)t~ . (dx) + (~2/2N) 

j=l  
n 

+o E f~o+,x.+, O/Oxj[f(x,, ,x.)]~,.+,(dx) (213) 
j = l  

(In/z~ J_ 1, j denotes the omitted variable.) 

Lemma 2.3.2. The martingale problem associated with (G x,  D O U 
D1) has a unique solution which is given by the distribution of the process 
X~v(., .) defined by (2.9). 

Proof. The fact that the distribution of XN(' ,  ") provides a solution 
to the martingale problem can be established by a straightforward compu- 
tation involving ItS's lemma and the observation that 

~(xN(t)) = g N - ' .  Y, 0(xAt ) )  = ~ * ( x , ( t )  . . . . .  xN(0)  (2.14) 
j= l  

Using (2.3) we obtain 

AN~*(X 1 . . . . .  XN) 

= ( , 2 /2N)g '  U :. Y, O(~j) �9 Y~ a%(xj)/a~/ 
j= l  j= l  

[ + ( o 2 / 2 N ) g "  N -1 .  (xj �9 ~,  [00(xj)/Oxj] 2 
j= l  

-Og'  N -~.  E O(xj) N - 2 "  E E (x j -x~)OO(xj ) /Oxj  
j=l  j=] k~j 

+ g' N - ' .  �9 ( - x ]  + xj) 0 0 ( 5 ) / 0  5 

= a ~  U - 1 .  (2.15) 
1 

The fact that ~(Xs( t ) )  - ftoGXg,(X(s))ds is a martingale then follows from 
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It6's lemma or equivalently, the martingale characterization of the system 
(1.6). 

The uniqueness is first established in the special case 0 - - 0  using a 
duality argument (cf. Dawson and Hochberg(tl)). Then the uniqueness in 
the general ease is established by using a Cameron-Mart in-Girsanov 
argument (cf. Dawson(8)). 

2.4. A Nonlinear Markov Diffusion Process 

Before proceeding to the study of the N---> oo limit we must introduce 
the notion of a nonlinear Markov diffusion process (in the sense of 
McKean(4~ Let C[0, m) denote the space of functions which are continu- 
ous [0, ~ ) ,  furnished with the topology of uniform convergence on 
bounded intervals. Let Y denote the o-algebra of Borel subsets of C [0, m) 
and let {y(t)  : t/> 0) denote the canonical process on C[0, m). Finally, let 
0 t : C[0, ~)---> C[0, ~ )  denote the shift Oty(s ) : - -y ( t  + s) for s,t >10. 

A nonlinear Markov diffusion process is prescribed by a family of 
probability measures {P~ : ~ ~ MI(R 1)} on (C[0, ~ ) , 3 - )  which satisfy the 
following conditions: 

(i) for each B ~ J - ,  P.(B) is a Borel measurable function on 
MI(R 1); 

(ii) for each t~ E MI(R 1), P,(y(O) E B) = ~(B), and 
(iii) for B E 3 - ,  O < s <  t, P~(OtyEB[y(s ) :O<s< t ) = P ~ ( 0 t y  

B [y(t)) = P,(t)(BlOty(O)), where u(t) denotes the probability law ofy( t ) .  
In the terminology of McKean, y(t) is Markov with nonconstant transition 
mechanism which depends on t only via the distribution of y(t). If we 
define Tt(v(0)):= v(t), then (T t : t />  0} is a nonlinear semigroup in the 
sense that for s, t t> 0, 

v(t + s ) =  Tt+ , (v(0) )=  Tt(v(s))= Tt(Ts(v(O)) ) (2.16) 

The infinitesimal generator, if it exists, is given by 

A*/~ := l i m ( T t ( / Q -  l~)/t (2.17) 
t $ 0  " " 

The operator A* can be nonlinear; however, v(t) is still a solution of the 
nonlinear evolution equation: 

d,(t)/dt = A*p(t) (2.18) 

An important class of nonlinear Markov diffusion processes is given 
by the It6 stochastic differential equations: 

dy(t) = a(v(t), y(t))dt + o(v(t), y(t))dw(t) (2.19) 

where (w(t) : t > 0} denotes a standard Wiener process and v(t) denotes 
the probability law of y(t). Under the appropriate Lipschitz conditions on 
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the coefficients a(. ,  .) and a ( . , . )  the sequence of successive approxima- 
tions 

yo(t) =y(O) 

(t) = y (0) + fo'" ("n (s), y~ (s)) dw (s) + fo'a (,,,, (s), yn (,)) ds (2.20) Y~ q-l 

P.+ l (0  = probability law ofy.+ l(t) 

converges to the unique strong solution of (2.19) (refer to McKean, (40 It6 
and Watanabe, (3~ and Belopol'skaja and Daleckii (3) for various versions of 
these results). 

If the solution process has a sufficiently smooth transition density 
function p(t; x, y), then it is the unique solution of the nonlinear Fokker- 
Planck equation 

Op(t; x, y ) /Ot  = A*p(t;  x, y)  

= �89 02/0y2[ ~2(p(t; x, ) ,  y)p(t; x, y) ] 

- 8 / O y [ a ( p ( t ; x ,  . ) , y ) p ( t ; x , y ) l  (2.21) 

In the general case the forward equation (2.21) is a weak equation for the 
probability measure p(  t; x, dy). 

The "mean field" or "nonlinear" anharmonic oscillator is given by the 
nonlinear It6 stochastic differential equation: 

dy(t) = [ - 9 ( 0  + y ( t ) ]  dt + adw(t)  - O[ y ( t )  - ml(t)] dt 
(2.22) 

m,(t) := E(y ( t ) ) .  

The existence and uniqueness of a strong solution to this equation does not 
follow immediately from the results referred to above since the coefficients 
do not satisfy a global Lipschitz condition. However they are established in 
the Theorem 2.4.1. 

The nonlinear Fokker-Planck equation associated with (2.22) is 

0p(t; . ) lOt  = la28]o(t; . ) /Oy 2 -  8 /Oy ([(1 - O )y - y3 ]p (  t; .)} 

-O[f ye(t;dy)]~e(t;.)/Oy :=Amp (2.23) 

T h e o r e m  2.4.1, (a) the nonlinear stochastic differential equation 
(2.22) has a unique strong solution. The function ml(t ) is C ~ and bounded 
on [0, T] for T < oo. (b) The nonlinear weak equation (2.23) has a unique 
probability-measure-valued solution. 

Proof. Refer to Appendix A. [] 
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Remark  2. 4. 1. Equation (2.23) can be reformulated in the context 
of probability-measure-valued martingale problems. For a function Ff(.) in 
D 1 wi th f  ~ Co(Rn), let 

CFI( ) + - 

• f(x~ . . . .  , x,)t~,(dx) 

n 

+0 ~, ( +xn+l.O/Oxj[ f ( x  , . . . .  , xn)] txn+~(dx ) 
j=IJR" 

(2.24) 

The pair (G, D,) defines a probability-measure-valued martingale problem. 
Reinterpreting part (b) of Theorem 2.4.1, it follows that this martingale 
problem has a unique solution, namely, the deterministic probability- 
measure-valued process 

V(t, dx) : = p ( t ;  dx) (2.25) 

where p( t ;dx)  is the unique probability-measure-valued solution of Eq. 
(2.23). 

2.5. The Mean Field Limit of the Ensemble of Oscillators 

Theorem 2.5.1. Let ( X N ( "  , "): N = 1,2 . . . .  } denote the sequence 
of probability-measure-valued diffusions defined by (2.9). As N ~ m ,  
XN(' ,  .) converges in the sense of weak convergence of probability mea- 
sures on C([0, m), MI(R ~)) to the deterministic process { Y(t) : t >1 0}. 

Proof. Refer to Appendix B. [] 
This result can be interpreted as follows. For very large N, the 

evolution of a single oscillator is approximated by the nonlinear anhar- 
monic oscillator (2.22). In the terminology of McKean, (4~ the motion of a 
"tagged" particle approaches that of a particle which satisfies the nonlinear 
stochastic differential equation (2.22), that is, the motion of a particle in a 
"mean field." Furthermore the motions of two or more tagged particles 
approach independent copies of the one-particle nonlinear motions. The 
latter property is known as "propagation of chaos"; a statement of this 
property in the setting of probability-measure-valued processes is given in 
the following corollary. For another approach to the propagation of chaos, 
refer to McKean. (4~) 

Corollary: Propagation of Chaos. Let { x j ( t )  : t >i 0 ; j  = 1 . . . . .  N )  
denote the N-particle system defined by (1.6). Let MN: g(t; dx: . . . .  , dxk) 
denote the kth moment measure for the random probability measure 
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XN(t, "), that is, for Borel sets A 1 . . . . .  A k 

MN;k( t ;A, , .  . . ,  An) := E(XN(t ,  AI) . . .  Xu(t ,  Ak) ) (2.26) 

Then as N-~ m, 
k 

M x : k ( t ; d x , , . . . , d x k ) ~ I ~ p ( t ; d x j )  foreach t > 0  (2.27) 
j=l  

in the sense of weak convergence of probability measures on R k, where 
p(t ;dx)  denotes the probability-measure-valued solution of Eq. (2.23); 
provided that (2.27) is assumed to be valid for t = 0. 

Proos First note that a probability-measure-valued process is deter- 
ministic if and only if its moment measures are product measures. Since the 
limit process { Y(t) : t > 0} is deterministic, its moment measures are pro- 
duct measures as in the left-hand side of (2.27). Hence it suffices to prove 
that the moment measures of the processes XN(t, ") converge to those of 
Y(t). F o r f  E CK(Rk), Theorem 2.4.1 implies that for each t > 0, 

lira Eu(F~(X,( t ) ))= lim ( . . .  f f(x, . . . . .  Xk)MN:k( t ;dx  , . . . .  dx~) 
N - - )  oe J N---> ~ d 

= f . . . f 
(2.28) 

But (2.28) immediately implies (2.27) and the proof is complete. �9 

3. PHASE TRANSITION FOR THE MEAN FIELD LIMIT 

3.1. Equilibrium Distributions 

Consider the nonlinear Markov process which was obtained in the 
mean field limit (2.22), (2.23). The equilibrium probability distributions for 
this model are characterized as follows. 

I.emma 3.1.1. Every equilibrium probability distribution for the 
nonlinear Markov process given by (2.22), (2.23) with a 2 > 0, is given by a 
solution of the functional-integral equations: 

p , , ( x ) = Z a - l . e x p ( a - 2 [ ( l - O ) x 2 - � 8 9  (3.1) 

= f x.po(x)dx := m(a) (3.2) a 

where Z~ is a normalizkng factor. 

Proos In view of Eq. (2.23), an equilibrium probability density for 
the system (2.22) must satisfy 

� 8 9  if 0 2 > 0  (3.3) 
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where a = ml(a ) = fzpa(z)dz. Solving (3.3) we obtain 

pa(X) = Za-I . exp( o-a[(1 - O )x  2 -  �89 x 4 -t- 2aOx ] ) 

where 

g a -  fexp( O--2[(1- 0)X 2 -  �89 "1 - 2aOx] } dx 

and the proof is complete. �9 
Therefore there is a one-to-one correspondence between equilibrium 

distributions and solutions of the equation: 

re(a) = a (3.4) 

Note that a = 0 is always a solution of Eq. (3.4). In the special case 
o 2 = 0, there are exactly three equilibrium probability measures: 

/o0(') = 80, /o1(') = 81, P - l ( ' )  ~" 8 - ,  (3.5) 

In this case P0(" ) is unstable and p_+ l( ')  are both asymptotically stable. The 
question of the existence of more than one equilibrium distribution in the 
case 02 > O is discussed in detail below. 

3.2. The Hierarchy of Moment Equations and Generating Functions 

Let ( y ( t ) :  t > 0} denote the solution of the nonlinear stochastic 
differential equation (2.22). Then It6's formula yields 

dyk(t) = kyk- l ( t )dy( t )  + �89 - 1)aZyk-2 dt 

= [k(1 - O)yk(t) -- ky~+2(t) + � 8 9  1)a~k-X(t) 

"t- E ( y (  t) )ky  k-  l(t)] dt -t- oky k-  t(t) dw( t) (3.6) 

Taking expectations and setting mk(t ) := E(yk(t)),  we obtain the hierarchy 
of moment equations for k = 1,2, 3 , . . . ,  

dm~(t)/dt = k[(1 - O)m~(t) - mk+z(t)�89 - 1)o2mk_z(t) 

+ Oml(t)m k_ , ( t)]  (3.7) 

and m 0 = 1. 
The hierarchy of moment equations (3.7) implies that the moments of 

an equilibrium probability distribution for the nonlinear Markov process 
(2.22) satisfy the system of equations 

mk+2=(1--O)mk+�89 k =  1 , 2 , 3 , . . .  

(3.8) 
The system (3.8) allows us to solve for m3, m4, m 5 . . . .  in terms of the first 
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two moments rn 1 and m 2. Thus there remain two unknown parameters 
which must be determined. For example, 

m 3 = m 1 (3.9a) 

m 4 = (1 - O)m 2 + �89 2 +Om 2 (3.9b) 

m s = (1 - O)m, + o2m, + Omlm 2 (3.9c) 

m 6 = ( ( 1  - -  0) 2 + (3/2)02)m2 + �89 -- 0) + 0(2 -- O)m~ (3.9d) 

Given a random variable X the moment generating function Mx(.  ) 
(provided it exists) is given by 

Mx(~ ) := E(exp(~X)) = ~ mn( ' /n!  (3.10) 
n = 0  

The cumulants, k,,  and cumulant generating function Cx (') are defined by 
oo 

Cx(~ ) : = l n M x ( ~  ) = ~ k,~H/n! (3.11) 
n = l  

For example, 

k 2 = m 2 - ml 2 := v, the variance of X (3.1 la) 

k 3 = m 3 - 3 m l v -  m~ (3.11b) 

k 4 = m 4 - 4mlm 3 - 3m 2 + 12mZm2 - 6m 4 (3.1 lc) 

Letpa( ' ) ,  Za be defined as in Lemma 3.3.1 and let 

f l o ( x ) = Z o ' e x p { o - 2 [ ( 1 - O ) x 2 - � 8 9  if 0 2 > 0  (3.12) 

A(a) :-- lnZ~ (3.13) 

Let Ma(.), Ca(') denote the moment generating and cumulant generating 
functions of the probability distribution Pa ("), respectively. Then, 

C0(f) = A(o2~/20 ) - A(0) (3.14) 

C~(~) = Co(~ + 2 a 0 ) -  Co(2aO ) (3.15) 

m(a) = (o2 /20)  . dA(~)/d~l~= a (3.16) 

3.2. Moment Inequalities 

The purpose of this section is to derive some important inequalities for 
the first four moments of equilibrium distributions for the nonlinear Mar- 
kov process (2.32). We begin by reviewing some basic inequalities arising in 
the study of the general moment problem and in the study of ferromagnetic 
systems. 
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3.2.1. 
ment problem 

m n := x n/~ (dx), n = 0,1,2 . . . .  

have a solution, it is necessary and sufficient that 

A >~0, n = 0 , 1 , 2  . . . .  

where A n is the nth Hankel determinant defined by 

m o m 1 . . . . . . . . .  m n  

72 
I m n  m n  + 1 . . . . . . .  m 2 n  

The Hankel Inequalities. In order that a Hamburger too- 

(3.17) 

(3.18) 

(3.19) 

Proof. Refer to Shohat and Tamarkin (51). �9 

3.2.2. Ferromagnetic Inequalities. Assume that 

o (dx) = e x p [ -  V(x)  l dx 

where V(.) satisfies 

V(.)  is even, continuous, lim V(x)  = oe, and (3.20) 
x--~ • oo 

foXg(y)dy with g(0) 0 and g convex on [ 0, m) r e ( x )  = c~ + = 

For s o m e K / > 0 ,  a s s u m e t h a t J j j < K , j = l , . . . , N ,  0~<Jj~< K f o r  1 < j  
=/= k < N. Assume that for any real hj, 1 < j <<. N, 

Z(hl  . . . . .  hN) := fRNexp + ~, I-I p(dxj) (3.21) 
" = 1  j , k = l  j = l  

where o(dx) = e xp [ -  V(x)] dx. Then the following inequalities are satisfied: 

Griffiths, Hurst, Sherman ( GHS ): 

03/~hj~hj2~hj3[lnZ(h, , . . . ,hN)i<<.O if hj>~O, l<<.j.<<U (3.22) 

GHS: d 3 / d h 3 [ l n f e x p ( h x ) . e x p ( - T x Z ) o ( d x ) ] < O  foral l  h>~0, 

for all values of y (including negative values) for 

which exp( - Vx2)o (dx) is a finite measure. (3.23) 

Lebowitz: O4/~h ~hj2~hj Ohj4[lnZ(h~, . . . , hu)] < 0 

if h I = h 2 . . . . .  h u = 0 (3.24) 

Proof. Refer to Glimm and Jaffe, (25) Ellis, Monroe and Newman, (~5) 
Ellis and Newman, (17) and Lebowitz. (37) �9 
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We now apply  these general  results to obta in  a series of inequalities for 
the equil ibrium distributions of the nonl inear  M a r k o v  process. 

i . e m m a  3.2.1. Let  k3 denote  the third cumulan t  of an equil ibrium 
distr ibution for the nonl inear  M a r k o v  system (2.22). (a) If  m 1 /> 0, then 

k3 < 0 (3.25) 

(b) If m I > 0, then v >/(1 - m~)/3 where v :=  m 2 - m~. 

Proof .  By (3.2) and  (3.15), 

Cm,(~) = C 0 ( ( +  2 m 1 0 ) -  C0(2m10) 

Then  applying the G H S  inequali ty (3.23) we obta in  

k 3 = d3fm,(~)/d~3li=o = d3Co(~)/d~3lf=2m, < 0 if m 1 ) 0 

and  the proof  of (a) is complete.  
F r o m  (3.9a) we have  m 3 = m 1. But by  (3.11b), m 3 = k 3 + 3mlv + m~. 

Therefore,  

m I - 3mlv - m~ = k 3 < O. 

Since we are assuming m 1 > 0, this implies that  

1 - 3 v  - m r < 0 

and the proof  of (b) is complete.  [] 

I_emma 3.2.2. Let v(O, o) = m2(O, o) denote the var iance of the equi- 
l ibr ium distr ibution P0( ' )  given by  (3.12). (Note  that  m I = 0.) (a) For  fixed 0 
and  e > 0, 

o / 2 3 / 2 -  c < v(0, o) < 0/21/2 + ,  (3.26) 

for all sufficiently large o > 0. (b) If 0 < 1, then 

v(O,o) ) o /6  ./2 (3.27) 

I f 0  > 1, then 

v(0, o) >~ o2 /2 (0  - 1) - 3o4 /4 (0  - -  l )  3 (3.28) 

Proof. 
(3.9) we have 

m 4 = �89 + (1 - O)m 2 

m 6 = [(1 - 0)  2 + (3/2)o2]m2 + �89 - 0)  

(a) Since P0( ' )  is even, m 1 = m 3 = m 5 . . . . .  0. F r o m  Eqs. 

(3.29) 

(3.30) 

By the Hanke l  inequali ty A 2 >/ 0, it follows that  

m 4 >/ m~ (3.31) 
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Hence 

�89 2 + ( 1 - O ) m  2>1 m~ 

Therefore for sufficiently large o > 0 

m 2 ~< 0//21/2 + C (3.32) 

From the Hankel  inequality A 3 >/0, we have 

_ 2 2 _  m3m6 ) 0 (3.33) mzm4m 6 m 3 -t- m2m 4 

Substituting (3.29) and (3.30) into (3.33) and collecting the highest-order 
terms in o we obtain 

m 2 >/ o//23/2 - e (3.34) 

for all sufficiently large o and the proof of (a) is complete. 
(b), (c) Using the Schwarz inequality, 

m 2 << m2m 6 (3.35) 

Hence 

(1 - O)2m 2 + (3//2)o2m 2 + �89 - O)m 2 >1 (1 - O)2m~ + o2(1 - O)m 2 + ~4o 4 

Therefore 

3m 2 - ( 1 - 0 ) m  2 - � 8 9  2/>0,  and 

m 2/> (1//6)(1 - 0) + ((1 - 0) 2 + 6o2) '/2 

If 0 < 1, this implies that 

m 2 /> 0//61/2 

If 0 > 1, then using a Taylor expansion we obtain 

m 2/> 02//2(0 - 1) - 304//4(0 - 1) 3 

and the proof of (b) and (c) is complete. �9 

Remark  3.2.1. It is possible to extend the method of Hankel  inequal- 
ities used in the proof of Lemma 3.2.2.a to obtain successively better 
estimates of v(O, o) by using the inequalities A n /> 0. This can be used to 
obtain numerical approximations of arbitrarily high accuracy to the true 
value (cf. Dawson (l~ 

3.3. Existence of a Phase Transition for the Mean Field Limit 

Let v(O, o) denote the variance of the distribution po(x)dx, and ~'(0, o) 
: = ( 2 0 / o 2 ) . v ( 0 ,  o). A pair (0, oc) for which f(0, oc)= 1 is said to be 

critical. 



Critical Dynamics and Fluctuations for a Mean-Field Model 51 

T h e o r e m  3.3.1.  
tion if and only if 

The equation m(~)= ~ has a strictly positive solu- 

~(0,0) > 1 (3.36) 

Proof. From Eq. (3.16), 

dA(~)/d~]~= a = 2a-20m(a) ,  and (3.37) 

d2A(~)/d~2]~= a = (20a-2)2v(a)  = (200-2) �9 dm(~)/d~]r a (3.38) 

By the GHS inequality (3.23), d3A(~) /d (  3 < 0 if a > 0. Therefore, 

dem(~)/d~21e=a = (20o-2)  - ' .  d3A(~)/d~31e= o ,< 0, if a > 0 (3.39) 

This implies that the function {m(~) : ~ > 0} is concave and that for a > 0, 

am(~)/d~le=a <. dm(~)/a~le=0 = (20o-2). v(0,o) = ~(0,o) (3.4O) 

Therefore the equation m(a)  = a has a strictly positive solution if and only 
if 

dm(~)/d~le= o = ~'(0,a) > 1 (3.41) 

and the proof is complete. �9 

Theorem 3.3.2, Consider the nonlinear Markov process (2.23) for 
fixed 0 > 0. 

(a) 
(b) 
(c) 

~ .  
(d) 

(e) 

For all sufficiently large o, ~'(0, o) < 1. 
For all sufficiently small positive 0, ~(0, a) > 1. 
If 0 > 0, then the equation ~'(0, o) = 1 has a unique root 0 < 0r 

At a critical point (0, oc), 

m 2 = m 4 = 02/20 

Any critical point (0, oc) must satisfy 

2-1/2 <....(0c/0) <~ 21/2 

(3.42) 

(3.43) 

ProoL (a) For sufficiently large a and fixed 0 > 0, Lemma Y2.2.a 
yields the inequality 

200 -2v(O,a) < 200 -2(0 /2  ,/2 +e) = 2  ' /20/0 +20o 20 < 1 (3.42) 

The inequality (3.42) together with Theorem 3.3.1 imply that the equation 
m(() = ~ does not have a strictly positive solution if a is sufficiently large. 

(b) For 0 < 1, Lemma 3.2.2.b implies that for sufficiently small 
positive a, 

200 -2v(0,o) > 20/6 '/20 > 1. (3.43) 
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For 0 > 1, Lemma 3.2.2.c implies that for sufficiently small positive o, 

20o 2L~(0, O) /> 2 0 0 - 2 [ a 2 / 2 ( 0 - - 1 ) - - 3 0 4 / 4 ( 0 - - 1 )  3] > 1 (3.44) 

Inequalities (3.43) and (3.44) together with Theorem 3.3.1 imply that for 
fixed 0 > 0, the equation m(~)=4 has a strictly positive root a for all 
sufficiently small o and the proof of (b) is complete. 

(d) This follows immediately from Eq. (3.9.b). 
(e) This follows immediately from (3.42) and inequality (3.26). 
(c) Differentiating ~(0, o) = (20/o2). fx 2po(x ) dx with respect to o, 

df(O,o)/do=-(c2/o){o2rn2 + ( 1 - 0 ) [ o 2 / 2  + m 2 ( 1 - 0 ) - m 2 ] )  (3.45) 

If the equation f(0, o ) =  1 has two or more solutions (in o), then at one of 
them we must have 

d~(O, o)/do >1 0 (3.46) 

But at such a point, m 2 = 02/20, and therefore 

d~(O,o)/do = -(c2/o)[3o4/40 - o 2 / 2  +o2 /20  - o 4 / 4 0 2 ]  (3.47) 

But according to (3.43), at a critical point, 0 = o / a  where 2 -1/2 < a < 21/2 
Then 

df(O,o)/do = - (c2a/4) .[3o 2 + 2  - o (2 / a  +cQ] (3.48) 

But for 2 - 1/2 < a < 21/2, the right-hand side of (3.47) is strictly negative 
for all o > 0 thus contradicting (3.46). This therefore implies that the 
equation ~'(0, o) = 1 has a unique solution 0 < o c < oc and the proof of (c) is 
complete. �9 

Remark 3.3.1. The parabolic cylinder function D, (z) is defined by (cf. 
Erd61yi (21)) 

D~(z) := [ e x p ( -  �88 - v)]fo~eXp( - z t -  �89 ~-1 dt, for ~ < 0 

(3.49) 

Using this and the definition of v(O, o) we obtain 

v ( o , o )  = oz )_(3 /2) [ (0  - 1 ) / o ] / 2 z ) _ 1 / 2 [ ( 0 -  1)/.] (3.50) 
Hence the criticality condition becomes 

D (3/2)[(0- 1 ) /o] /D_, /2[ (O-  1) /o]  = o / 0  (3.51) 

In the special case 0 = 1, we obtain 

oc=D_(a/2)(O)/D 1/2(0) ~'~ 0.956 (3.52) 
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Desai and Zwanzig (13~ have also shown that 
oo 

1 n exp(A(a)) = o'/2Trl/2 ~-~ (n ! ) -  (a202o 2) exP(�88 (3.53) 
n = 0  

where z := (0 - 1)/o. The critical boundary is plotted in their paper. 

3.4. Linearizat ion of the Mean  Field Limit 

The main objective of this section is to study the linearization of the 
nonlinear Fokker-Planck equation (2.23) around the equilibrium distribu- 
tion po(x)dx. We begin by studying the self-adjoint operator associated 
with the one-particle linear Fokker-Planck equation 

0p(t ;x)/ i~t  = -- O/OX[V(X)])(t;x)] -I- �89 0~O(t; X)/OX 2 := A~.a]J(t ; x) 

(3.54) 

where v(x) = (1 - O)x - x 3 + aO. The unique equilibrium distribution for 
this Markov process is given by 

pa(X ) = qt2/ (xt'g(x) dx (3.55) 
, a  

where 
q%(x) = exp{(1/2o2)[(1 - O)x 2 -  �89 4 + 2aOx] } 

Equation (3.54) can be solved by obtaining an eigenfunction expansion (cf. 
Titchmarsh (57)). 

The pair A ~'., A l,a can be represented as follows: 

A* x = - �9 B I I,.P( ) "I'0(x) P(x) / ' I '0(x)  ] 
(3.56) 

A,.~+(x) = - [  1/ff '0(x)] .  B[~(x)qlo(X)] 

where 

~ , ~ ( x )  : =  - �89 + vo(x)e~(x) ( 3 . s 7 )  

and the relation between V a and v is given by the Riccatti equation 

d v ( x ) / d x  + (1/2o2)v2(x) + X = Va(x) (3.58) 

For the anharmonic oscillator, 

Va(x) = �89  - -  O --  3 x  2) 

+ ( 1 / 2 o 2 ) [ ( 1  - O)x - x312 

+ X + (1/2o2)[a20 2 + 2 a O ( ( t -  0 ) x -  x3)l (3.59) 

where X is chosen so that the smallest eigenvalue of B is 2~0 = 0. Since 
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Va(x)~ oo as [xl ~ oo, the Schr6dinger equation 

B ~j = Xj'I'j (3.60) 

has a pure point spectrum and there is a basis {~t'j(x):j = 0, 1,2, . . . , } of 
L2(R l) consisting of eigenfunctions of B and 

0 = ~k 0 < ~k I < ~k 2 < ' " " (3.61) 

The eigenfunctions for A ~',a are p,  ( .)  defined by 

Pn( ' )  := ' ~ 0 ( ' ) ~ , ( ' ) ,  n = 0, 1,2 . . . .  (3.61) 

and 

A ~',~P. (x) = - •.p. (x) (3.62) 

The solution of Eq. (3.54) is then 
oo 

p(t; x) = po(X) + ~o(X) ~ c . f f ' . (x)exp(- ;~ . t )  (3.63) 
n = l  

where the convergence is in L2(R l). 
The linear operator A l, a can also be associated with a self-adjoint 

operator on L2(po), the space of functions which are square integrable with 
respect to the measure po(X)(Ix, as follows: 

AS~ l,a . := -~ .~ ' . ,  where ~ ' . ( x ) :=  ~.(x)/~o(X ) (3.64) 

and (~.( . )  : n = 0, 1,2 . . . . .  ) forms an orthonormal basis for LZ(po). 
We now return to the nonlinear equation: 

O p ( t ; x ) / 0 t  = At, op(t;x)-O[fyp(t;  y)+]Op(t;x)/Ox (3.65 t 

Recall thatp0 (.)  is a fixed point for the evolution determined by (3.65). The 
linearization of the Fokker-Planck operator at the equilibrium distribution 
P0(') is given by 

S*g(x)  := �89 2-  OIOx{[(1 - O)x-  x 3 ] g ( x ) )  

-O[ f yg(y)dy] "[apo(X)/Ox] (3.66) 

and the linearized Fokker-Planck equation is 

0pt(t;  x)/St = S * p t ( t ;  x) (3.67) 

The linearized moment  equations are 

dm[(t)/dt = k[(1 - O)m~(t) ' - mk+2(t ) + �89 - 1)a2m~_2(t) 

+ Om((t)m k 1(01] for k odd 
(3.68) 

dm~(t)/dt = k[(1 - O)m~(t)- ink/+2(/) 

+ �89 - 1)a2m~_z(t)], for k even 
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where 

m[(t) := f x p'(t;x)dx 
Consider the action of the linearized operator S *  on a function of the 

form 
g(x) = 6(x)%(x) 

This yields 

S * g ( x )  = ( - I B m ( x ) ]  - 0 @ , X ~ o ) .  2 [  (1 - 0 ) x  - x3]  �9 ~ola~Zo}~o 
:= ( L ~ )  " q~0 (3.69) 

where B is given by (3.57) with a = 0. Note that L~'t 'o = 0. 
Let Y l  denote the Hilbert subspace of L2(R 1) spanned by ,I% and 

x~t' 0. Y l  • denotes the orthogonal complement of W l  and II the projection 
on ~ 1  • Then I I L # I I  is a self-adjoint operator on ~ 1  • and for ~,~ 
E ~ 1  • 

(1-IL ~IFI~,, if) = - (B4, ~) (3.70) 

I .emma 3.4.1. Let X~ denote the smallest eigenvalue of - i~IL#II .  
Then 

X.~ ~ X  1 > 0 .  

Proos 

X, = inf((Bg,,g~): II~tl = 1, 6 �9 L2(R') ,  (+, q'0) = 0} 

< i n f { ( B ~ , ~ ) :  I1~11 = 1, ,~ �9 L2(R ~), (q~, ,t,o) = (~,x,I,0) = 0} 

and the proof is complete. �9 
Let { Tt ~ : t/> 0) denote the semigroup of operators on Y i  • generated 

by I IL#I I .  Note that 

;0 [;: liT, , lldt< exp(-Xi s)ds 114,11 = II II/XY (3.71) 

T h e o r e m  3.4.1. Let 0 > 0. (a) For a > %, the linearized system is 
stable, that is, if 

f(O;x)=q~(x)~'o(X ) with r149 ~) and fp'(O;x)ax=o 
then 

m((t) : = f x p ' ( t ; x ) d x - * 0 ,  and 

p'(t; x)/ff'o(X)-~O in L2(R ') a s  l - - ~  oo 

(3.72) 

(3.73) 
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(b) For o = o c, the null space of J *  is spanned by (P0, q0) where qo(X) 
: =  x . p o ( X ) .  

Proof. (a) In view of Lemma 3.4.1, (3.73) follows from (3.72). To 
prove (3.72) consider the linearized moment equations (3.68). First note 
that the even moments evolve independently of the odd moments according 
to the same evolution as the one-particle evolution. In view of the hypothe- 
sis on p(0; .), this implies that the even moments m2tk converge exponen- 
tially fast to zero. Now consider the modified linear equations for k odd: 

drh~/dt = k[(1 - O)~fi~(t) A, - mk+2(t ) + l ( k  -- 1)oZrh~_z(t) 

+ Oa(t)m k_ l(0)] (3.74) 

For a ( t ) =  a, r h ( ( t ) ~ m l ( a )  as t o m ,  and for o > oc, 

mZ(a) = a .  [dm(a) /da] la= o < a by Theorem 3.3.2, (3.75) 

where m(a) is defined as in (3.16). Also consider the modified one-particle 
evolution: for j = 1,2, 

dx( t )  = [(1 - O)x( t )  - x3(t)]  dt + odw( t )  + cg(t)dt (3.76) 

If al(t ) < a2(t ), then the corresponding mean processes rn~J)(t) satisfy 

m~l)(t) <<. m}2)(t) (3.77) 

This is proved starting from Eq. (3.76) and using a standard coupling 
argument; the same property (3.77) is then inherited by the first moment 
rh((.) in the linearized hierarchy (3.74). 

On the other hand, from the linear system (3.74) it follows that 

rh((t) = fotk(t  - s )a (s )ds+ o(t) (3.78) 

Comparing the case a(t) >1 0 with the case a(t) = 0, it follows from (3.77) 
that 

k(u)  >1 0 (3.79) 

Now let m~ > 0 be chosen and assume that t is sufficiently large so 
that we can ignore the transient term o(t). Freeze a(t) = m 1 for 0 < t ~< tl. 
Then 

rh((t) = rh((m 0 + o[exp( - ) t , t ) ]  . [ m  1 - m t ( m O l  (3.80) 

Therefore we can choose t~ such that 

r~t((tl)<~l(ml+ml(ml))..~-o~ml with 0 < ~ < 1 .  (3.81) 

Now freeze a ( t ) =  rhf(t 0 for t I < t ~< 2t l, and continue this process. Then 

lim rh((t) = lim oL ~. rn 1 = 0 (3.82) 
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But it follows from (3.78) that a(t)>1 rfi[(t)>>. 0; hence rh((t) computed 
above dominates the solution of (3.68), m((t), thus completing the proof of 
(3.72). 

(b) By (3.55), P0(') is the unique solution of S * g  = 0 for which 
fxg(x)dx = O, fg(x)dx = 1. In addition, any two solutions of ~ t * g  = 0 
with the same value of fxg(x)dx must differ by a multiple of p0(- ). Thus it 
suffices to prove that qo(x) is a special solution of . Z * g  = 0 with fxg(x)dx 
v ~ O. Now, 

J * q o  = x(~02 a~Oo/~X2 _ ~ /0x  ( [  (l - 0 )x - x3]po)  ) 

+ �89 .Opo/OX 

= [ , -  j ( ( , - o ) x  - 

=E 1 - ~(0, o)] E ( 1 -  O)x-  x3]po(X) (3.83) 

The proof of (b) then follows immediately since ~(0, oc) = 1. 

Lemma 3.4.1. The idea of the proof of Theorem 3.4.1.a can be 
modified to show that P0(') is an asymptotically stable fixed point for the 
full nonlinear Fokker-Planck equation (2.24) at the critical point oc. This 
fact is subsumed by the results of Section 4.2.2. 

4. THE INFINITE LIMIT: FLUCTUATION LIMIT  THEOREMS 

4.1. Fluctuation Theorem for o > o c 

In this section we investigate the fluctuations around the infinite limit 
process which are exhibited by a finite system of size N. First recall that 
there is actually a qualitative difference in their behaviors since the finite 
systems are ergodic whereas the infinite system can have more than one 
invariant probability measure. This underlines the fact that in general it is 
not valid to interchange the limits N---> oo and t ~ oo. 

In the infinite limit mean-field model the empirical distribution is 
given by identically distributed independent samples from the probability 
distribution X~176 dx)=p(t; x)dx where p( t ;  .) is the solution of the non- 
linear Fokker-Planck equation (2.23). Let X~(t; .) denote the empirical 
measure corresponding to N identically distributed samples from the distri- 
bution p(t; .). Let 

Y y  (t; -) := U 1/2. [X~ ~ (t; -) -_p(t; x)dx] (4.1) 

On the other hand we can consider the fluctuations in the N-particle 
process (2.1). In this case the N particles are not independent. We consider 
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the empirical fluctuation process: 

rN(t; .) := Ui/2[XN(t; .) - p ( t ; x ) d x ]  (4.2) 

Theorem 4.1.1. (a) Assume that the process X ~ ( - ; . )  is in steady 
state, that is, X ~(0; dx) -- po(X) dx. Then 

y y ( . ;  . ) 3  Y~( . ;  .) (4.3) 

in the sense of weak convergence of probability measures on C([0, 0o), J ' ) .  
yoo(. ; . )  is a generalized random field-valued Gaussian process which is 
represented as the solution of the linear stochastic evolution equation: 

OY~/Ot = A~,o Y~  + WO (4.4) 

where A* is defined by (3.54) and (W0(t): t > 0} is a Gaussian random 1,0 
function of space and time with zero mean and covariance: 

Cov[ { Wo(t ), 0), (Wo(s), ~b) ] = o 2. min(s, t) f +'(x)+'(X)po(X) dx (4.5) 

(b) YN(t; ")-,~ Y(';  ") in the sense of weak convergence of probability 
measures on C([0, o o ) , J ' ) .  Y( - ; . )  is a generalized random-field-valued 
Gaussian process which is represented as the solution of the stochastic 
evolution equation 

8 Y/S t  = aS* Y + W~ (4.6) 

where 

s r  v=~2o2v/Ox 2- 0/~x([(1- O)x- x3]y) 
-o[ f yp(,; y)+] o V lOx - e< v, y> op(t; x)iox 

and { We(t) : t > O} is a zero mean Gaussian Markov process in J '  with 
covariance: 

Cov(KWp(t),ep), KWp(s),+)) = a2s f q"(X)+'(X)p(U; X) dxdu 

for every pair q~,+ ~ J .  In the equilibrium case, that is, p(O; x) = p0(x), Y 
is the solution of the linear stochastic evolution equation: 

8 Y/S t  = J *  Y + W; (4.7) 

where ~P* is defined by (3.66). 

Proof. The proofs of (a) and (b) are similar and for this reason we 
will only discuss (b). The proof is carried out by first establishing that the 
processes Yw( ' ; ' )  are weakly compact in the topology of weak conver- 
gence of probability measures on C([0, oo),S) where S is a Hilbert sub- 
space of J ' .  The proof is completed by showing that any limit point is the 
solution of a martingale problem associated with an operator G (2) and that 
this martingale problem has a unique solution which coincides with the 
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solution of the stochastic evolution equation (4.6). The operator G (2) is 
obtained as the formal limit of the infinitesimal generators GN (2) of the 
process pair {p(t;dx), YN(t; . ) : t  > 0}. 

The details of the proof are lengthy but standard (refer to Holley and 
Stroock, (27) Dawson and Salehi, (9) Tanaka and Hitsuda (55) for detailed 
proofs of this type). In this discussion we will omit the proof of weak 
compactness but will carry out the formal limit process in order to identify 
the limiting martingale problem. 

Let Gu (2) denote the infinitesimal generator of the process pair {p(t; 
dx), Yu(t; .)} when viewed as a diffusion process with values in a subspace 
of J ' ( R  1 X R 1). Let D denote the algebra of functions on J ' ( R  1 x R 1) 
containing those of the form 

Ff(~,4z) := ( f ( x  1 . . . . .  x,;x,+i . . . . .  x2"), @x" X ~I'x"> (4.8) 

where @ x~ denotes the n-fold tensor product of the distribution with itself 
and f E J ( R 2 n ) ,  the space of C ~ functions which together with deriva- 
tives of all orders are rapidly decreasing at infinity. Then, 

2n 

G(N2)Ff(~,x!*) = ~,, ({�89 4 "1-[(1-O)xj- x]. ] O/Oxj} 
j=l 

x f ( x , , . . . ,  x2~), r ~x" X g,x,} 

+ o  ( [ o i ( x ,  . . . .  
j = l  

2n 

+0 ~ 
j = n + l  

( ( ~ f ( x , ,  . . . , X2n)/~Xj)  X2n + 1, I~Xn X ~• l,j 

2n 2n 

2 
j = n + l  k = n + l  

k-~j 

x [r x ,t,<2-+*~ + 0~2,,+ ~ x ,!,u~] } 

(a2/8xj 8x~ [ f(x, . . . .  , x2.) ] ,  @x. 

x ,I "x'-~J'k x 8(xj - x ~ )  x ~,u~} 

+ N  - ' /2  0 (O/8xjf(xi,...,x2,)x2n+,,@X~X't "x"+'} 
1 

2n 2n 

j ~ n + l  k = n + l  
k ~ j  

x ~e ~" - ' , *  x 8(xj - x ~ ) } l  

(4.9) 
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In q)• j refers to theomi t ted  variable and in qvP(J), j refers to the 
included variable. [In (5.6) some of the coefficients include the expression 
(x, q)), which is not defined for arbitrary �9 ~ J ' .  However it is possible to 
verify that the solution process is well-defined on a Hilbert subspace of J '  
on which this operation is well defined.] 

We now consider the limit of the processes {p(t; "),Yu(t; ")} as 
N---> oo. We obtain 

lim G(N2)Ff(rP, qt) = G(2)FI(dg, ,Is) 
N----> oo 

(4.10) 

X "I *• x 6(xj - Xk) X �9 (j)) (4.11) 

The linear operator G (2) defined by (4.11) is identical to that associated 
with the linear stochastic evolution equation for the pair (p( t ;  .), Y(t; .)} 
wherep(.  ; .) denotes the solution of the nonlinear Fokker-Planck equation 
(2.24) and Y(-; -) is the solution of the linear stochastic evolution equation 
(4.4). Since the martingale problem associated with the operator G (2) has a 
unique solution, this completes the identification of the limit process. 

Remark 4.4.1. For o > o c, the linearized operator S *  was shown to 
be stable in Theorem 3.4.1. Using this fact it can be shown that the 
nonlinear stochastic evolution equation (4.7) has an equilibrium distribu- 
tion which corresponds to a generalized Gaussian random field. This 

where 

2n 

= 2 o)x,- x?] 
j = l  

x f ( x ,  . . . .  , x2,),(l?• X 'I ' x"  ) 

+0 2 { [ (8/Oxj) f (x,  . . . . .  x2,,)]x2,,+,,@x" X "I"X" x r '(2"+')} 
j = l  

2n 
-I-0 E ((OZ(xI' ' ' ' 'X2n)/(}Xj)X2n+' 'exnq*txn-t'j 

j=n+l 

x i t ,  u> x ,~2,,+1> + r x ,~uq )  

2n 2n 
-I- �89 2 E 2 (~)2//OxjOx,[f( xl . . . . .  X2n)] 'r 

j = n + l  k=n+l 
k v~j 
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random field describes the limiting equilibrium fluctuations in the empirical 
measure process in the N ~ oe limit. 

4.2. Critical Fluctuations and Dynamics 

4.2.1. Critical Fluctuations in the Order Parameter- -The Re- 
suits of Ellis and Newman. In this section we review the results of Ellis 
and Newman (16'18'I9) concerning the fluctuations in the order parameter at 
the critical point 0 = G. 

Recall that the N-particle invariant probability measure is given by 

t2] 

pN(X) = Z f ' e x p  (O/Na2)( 
N N 

\ 

Now let 

where 

, ( x , )  = exp{  o - 2 [ ( 1  - 0)4  - < ] )  

G(z) := o2z2/40 - A(oZz/20 ) (4.13) 

where A(. ) is defined as in (3.13). Then using (3.14) we obtain 

dG(z ) /dz l~=o  = o 

daa(z)/az2[~= o = 0 2 / 2 0  - v ( o ,  o) 
(4.14) 

d ' a ( z ) / a ? l ~ = o  = o 

d4G(z)/dz4]~ =o := ~ = _ k 4 

Note that Lebowitz's inequality (3.24) implies that 

k 4 = m 4 - -  3m22 ~< 0 (4.15) 

(It has been verified by numerical approximation that k 4 < 0 for several 
values of the parameters 0 and o.) 

There are three cases to be considered. 
Case I. Two-Phase Region. This is the case ~ (0 ,o )>  1, that is, 

02/20 < v(0,a). In this case G(-) has two local minima. 
Case H. One-Phase Region (Noneritical). This is the case ~(0, o) < 1, 

that is, o2/20 > v(0, a). In this case G(-) has a unique global minimum 
at 0. 

Case IlL The Critical Case. This is the case ~'(0,o)= 1, that is, 
02/20 = v(O, 0). In this case 

d2G(z)/dz2]z= o = 0, and (4.16) 

G(z) = z4/4! + o(z4), for z near zero. (4.17) 
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Theorem 4.2.1. Let X l . . . . .  X N be N random variables distributed 
according to the probability law PN(')  given by (4.12) and assume that 
o = o C and X > 0. Let 

N 
YN:=N-'EX; 

j=l  

(a) The distribution of XN satisfies 

N1/4" XN "[- W~ NIl4 

~expI-NG(s/N'/4)]ds/ f exp[-NG(s/N1/4)lds (4.18) 

where W is an N(0, 1)-random variable independent of XN" 
(b) As N--> ~ ,  

N 1/4" XN'-)->Z %xp(-kx4/4!)  (4.19) 

in the sense of weak convergence of probability measures on R 1. 

Proof. Refer to Ellis and Newman. (18) [] 

Remark 4.2. 1. The proof of the main result (b) of Theorem 4.2.1 is 
based on the representation (4.18) in the paper of Ellis and Newman (18) 
and covers a general class of potentials. However, for the special case we 
consider, (b) can also be proved using a large deviation theorem due to 
Richter (48) (this method is used in a paper of Dunlop and Newman(14)). 

4.2.2. Formulation of the Main Result on Critical Dynamics. It 
was noted in Remark 3.4.1 that P0(') is an asymptotically stable fixed point 
for the nonlinear Fokker-Planck equation (2.24) although this property is 
not inherited by the linearized system at the critical point o = ac. This is a 
reflection of the dynamical property known as "critical slowing down." 
This means that at the critical point the dynamics must be "speeded up" in 
order to observe the full development of the critical fluctuations. Further- 
more, in the case of distributed systems critical fluctuations are observed at 
all scales, a consequence of the fact that the "correlation length" tends to 
infinity as the critical point is approached. 

In order to provide a heuristic description of our results on the critical 
dynamics consider the one-particle system (3.76) with external input ay(t) 
= a. The equilibrium probability distribution for this system is 

pa(x)=Za-lexp{o-2[(1--O)x2--�89 (4.20) 

What the main result below says in heuristic terms is that the empirical 
distribution for the N-particle system (2.1) at the critical point o = %  can 
be approximately described as follows: 

XN(Nl/zt) ~P~(O/N"/'(')~[z(t)/N'/4 ] OPa(')/Oa[a=O (4.21) 
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where {z(t): t > 0} is a stationary stochastic process obtained as the 
solution of a stochastic differential equation (4.25) whose equilibrium 
probability distribution agrees with that given in (4.19). Note that X u (-; .) 
is observed in "fast time" N ~/2t; this is necessitated by the critical slowing 
down. Furthermore, note that the fluctuations in the empirical distribution 
are coherent, that is, the entire empirical distribution is driven or "slaved" 
by the process z(t).  This is in sharp contrast to the fluctuations observed in 
the noncritical case in which the fluctuations are described by a generalized 
Gaussian random field. Again this is a manifestation of the "macroscopic" 
nature of the fluctuations. 

Before stating the main result we describe more precisely the limit 
process appearing on the right-hand side of (4.21). First note that 

Opa(x)/3ala= o = 20Xpo(X ) (4.22) 

We define the signed-measure-valuedprocess Z( . ;  -) as follows: 

Z( t ;  dx) := z ( t )qo(x )dx  (4.23) 

where 

qo(x) : = Xpo(X ) (4.24) 

and {z(t) : t > 0} is the solution of the stochastic differential equation 

dz(t)  = - cz3(t) dt + o* dw(t)  (4.25) 

where o* > 0 and c := Xo'2/6 = ( -  k4)o'2/6,  and {w(t) : t > 0} is a stan- 
dard Wiener process. The state space for Z(- ;  .) is Mq +- := {/~ : # = zqo, 
z e R O } .  

We next determine the infinitesimal generator of the process Z(.  ; . ) .  
For f E C2(R 1), qb ~ L2(p0), let F~(.) be the function on Mq -+ defined by 

F~(/z) : = f ( ( ~ , / , ) )  = f((q~,cl~/dpo)po) , t* E M ~  (4.26) 

where 

q,)p0 = f ,(x)q,(X)po(X),lx 
Then, 

GzF4, (#)  = - cf'((q~, i,))(ep, qo) (d~/dqo) 3 + �89 o*~/"((q~,/,))(~, q0) 2 (4.27) 

Theorem 4.2.2. 
assume that 0 > 0 and that o = a C. Let 

UN (t; d x ) : =  U 1/4[ XN (U  l/2t; dx) - po(X) dx] 

If T < m, and U u (0)-~ a �9 qo as N---> oo, then 

UN(',  ")->+ Z ( . ;  .) (4.29) 

in the sense of weak convergence of probability measures on C([0, T], Mq+-). 

Let XN(.; .) denote the N-particle systems (2.1) and 

(4.28) 
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Corollary 4.2.2. Let Z~o(dx ) and UN(OC; ") denote the equilibrium 
states of the processes Z( . ;  .) and UN(.; -), respectively. Then 

(a) Uu(oo;dx)->-~Z~(dx ) = ~ .qo(x)dx as N-->m 

in the sense of weak convergence of signed measures on R ~, where ~oo is a 
random variable with probability density function 

p (x)  = Z - ' exp(  - cx4/2o .2) (4.30) 

(b) (limiting distribution of the order parameter) as N--> m, 

(X, UN(;dx)) = N 1/4" XN-)-)D(O,  oe) ~ ~em (4.31) 

in the sense of convergence of probability distributions on R 1. 

Proof. The proof is carried out in a series of five steps. 
Step I. Generator of U N and the N--> r Limit via Perturbation Theory. 

Let ~ : = N  -1/4 and let G~ denote the generator of UN('; ") defined by 
(4.28). For Ff,4, E Do, that is, Ff, ei,(Iz ) =f( ( /* ,4 ' ) )  with f ~ C2(R1), e O 
E C2(R l), the generator of X N, GXNFf, e,(~) is given by (2.11). Since we must 
consider the fluctuations around the distribution P0('), that is, we must 
consider the "centered" process, we restrict out attention to functions 
FU,~,(. ) with 

f e~(X)po(X) dx = 0 (4.32) 

We denote by D~ the class of functions of this type. For such a function 

Ff,~[ UN(t) ] = Ff,+[ NI/4XN( N~/2t) I (4.33) 

Making the appropriate transformations in (2.11) we obtain for Ff,~(.) 

G~Ff,,(t~)--Ic 2Gl + r + G3 + ~G41Ff,~( I~ ) (4.34) 

where 

GiFf,{a (~) = f'(< t*, O>)<Jg,, t*> 

G2Ff,+(1") = f ' ( (  t*,$>)( x, I*>(Oe#/Ox, t* - (P0/e)> 
(4.35) 

G3F~:~(~) = �89 ~2f,, (( ~, ~>) ( (~ /~  x)2, P0> 

G4Ff,r = �89  ~, ~b)) ( (a~/ax)  2, ~ -- (P0 / ' )>  

and where J is the linearized operator: 

f ~,(x) = �89 ~'~,(x)/~x'  + [(1 - O)x - x ~] ~ , ( x ) / ~ x  

+ Ox. f [ ag~(y) / 3y ] Po(Y ) dy (4.36) 
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The e ~ 0 problem is thus reduced to a problem in perturbation theory. The 
appropriate methodology for treating this perturbation problem has been 
developed in an important paper of Papanicolaou, Stroock, and Varad- 
han. (46) Their results extend the earlier work of Kurtz (35) and Papanico- 
laou (45) to the setting of martingale problems. The proof of Theorem 4.2.2 
is based on their perturbation methodology extended to the context of 
measure-valued processes. 

The core of the analysis and the idea behind the identification of the 
limit is based on the following formal computation. The idea is to compen- 
sate for the singular nature of G~ as c ~ 0 by introducing additive renormal- 
ization terms. This is done by introducing 

F ~ : =  Ff, e~ + cF 1 + r (4.37) 

Then 

Gr ~= c -2" G,Ff,~, + e '[ G,F 1 + G2Ff,~,] 

+ [ G3Ff, o + GzF' + G1F21 + R(c) 

=GzFf ,  o + R ( r  ), where R ( r  as r  (4.38) 

provided that conditions A, B, C below are satisfied. 
Condition A: Let ~ denote the projection onto the null space of G 1. 

Then 

~Ff,  O = El, o, that is, G1Ff, q, = 0 (4.39) 

The heuristic idea behind this condition is that the operator G~ acts as an 
"averaging" operator and forces the system to live on its null space. We 
identify the null space of G l in the next step of the proof and verify that 
e x p ( G l t ) ~  as t ~  ~ .  

Condition B: To eliminate the ~-~ term we require that 

G1F 1 + GzFf, , = 0, that is, (4.40) 

E l = - G 1-1GzFf,6 (4.41) 

where formally 

f0 G~-~v : =  - exp(G~t)vdt, provided that ~ v  = 0 (4.42) 

(In the setting of Papanicolaou, (4s) GI -~ plays the role of a "recurrent 
potential kernel.") In order that (4.41) be well defined we require the 
"solvability condition" 

~ G 2 ~  = 0. (4.43) 

This condition is verified in the third step of the proof. 
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Condition C: In order to determine the appropriate F 2 term we must 
solve the equation 

G1F2 = GzFf,~, - (G3Ff, o - G2GI-1G2Ff,,), that is (4.44) 

F2=  G1-1[ GzFf,~,-(G3FL, - G2G-'G2Ff,,)  1 (4.45) 

In order that (4.45) be well defined we require the "solvability condition": 

~ [  GzFf, 0 - (G3FI, ~ - G2GI-1G2Ff, q,)I = 0  (4.46) 

This solvability condition is automatically satisfied if we define 

GzFf.~ , := ~ [  G3Ff,, + G2FI 1 (4.47) 

In order to complete the formal limit calculation it remains to verify 
that G z defined by (4.47) agrees with that defined by (4.27). This verifica- 
tion is also carried out in the third step of the proof. 

Step II: Null Space of the Operator G 1 and G 1-1. 

Lemma 4.2.2.1. The null space of the operator G 1 is spanned by 
functions of the form Ff,1(. ) and Fj;,o (.), where ~0(x) is the odd function of 
x defined by 

q,o(X) :=  fooXU(x)dx 
(4.48) 

u(x)  = (20/02) �9 exp{ - [ ( 1  - 0 )x 2 - �89  2 } 

�9 s  [ ( 1 -  O)y 2 -  1)24] /02}ydy .  

Proof. If Ff,,(.) belongs to the null space of G 1, then 

G,Ff,~,( I*) = f ' (  ( Ix, ep))(.Se#, t*) = O. 

Therefore we require that ,z '~ = 0, that is, 

Jo4 ,  = - Ox f (Oq'/OY)Po(Y)dy, where 
J 

(4.49) 
f oeO = �89 2 +[(1  - O)x - x 3 ] O~lOx 

One solution of (4.49) is ~ =-- 1. To obtain an odd solution consider the 
equation 

�89 2 + [(1 - O)x - x 3 ] OeOo/OX = - O x  (4.50) 

Put u := OeOo/OX, an even function. For 0 < x < ~ ,  

OulOx + (2/~2)[(1 - O)x - x3]u = - ( 2 0 x / o  2) (4.51) 
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The only solution of (4.51) for which fu(x)po(x)dx < oe is 

u(x) = (20/o2) .  e x p { - [ ( 1  - O)x 2 - 1x4]/o2) 

�9 f x ~ 1 8 9  (4.52) 

The function u(x) defined by (4.52) yields a solution of (4.49) provided that 
fu(x)po(x)dx = 1. But 

f' u(x)po(x)dx= (40/o2)f0~176176176 [(1 --0 ) y 2  1 y4]/O2 } y dy)dx 

= (40/o2) fo~X2exp{[(l  - O)x 2 -  �89 dx 

= (20/o2)m2 = 1 

since o = o C, and the proof of the lemma is complete. [] 

I . e m m a  4 . 2 . 2 . 2 .  (a)  I f  (1,/~) = (%, /~)  = 0, then T * t ~ 0  as t ~ ,  

and G ~ - l :  = - f y T * l ~ d t  is well defined. 
(b) If (q~, P0) = (~, q0) = 0, then T/0--> 0 as t ~ m, and G 1-1~ := 

- f ~ T / o d t  is well defined. 

Proof. Part (a) is a consequence of (3.71). Part (b) then follows by 
observing that (a) implies that 

( Ttq~, It) = (~, Tt*l~) ~ (q',apo + bqo) = 0 (4.53) 

and the convergence to zero on the right-hand side is exponentially fast. 

Romark 4.2.2.1. As a consequence of Lemma 4.2.2.2, it follows that 
the limiting process as e ~ 0 must live on the null space of ~Y*, that is, the 
state space for the limit process is the linear space spanned by P0 and q0. 
However, in view of the centering of the process it follows that the state 
space is actually the one-dimensional linear space spanned by qo. 

Romark 4.2.2.2. As a consequence of Lemma 4.2.2.1 it follows that 

~Ffx, = Ff, n.,~ (4.54) 

where 

and 

II*~ = (~, 1)L2(po) + (~,qS0)L2(po) �9 ~0/ll~oil 2 
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Step III:  Identification of the Limit Operator G z .  The null space of G 1 
is spanned by functions of the form 

Ff, a+bO0(/s = f((/~, a + boo)) (4.55) 

In view of the centering of the processes UN it follows that we are 
restricting our attention to signed measures /~ such that (/L, 1 ) =  0 and 
therefore 

Ff, a+b~,o( ~) = f ( (  I~, b " Oo)) = Ff, b%( b t) (4.56) 

Condition A then implies that it suffices to compute GzFf,,o for f 
C~(R ~). This means that the limit process, if it exists, must live on the space 

The solvability condition required for Condition B is given by (4.43). 
But this follows immediately since 

(~e~o/~X, q0) = 0 (4.57) 

Lemma 4.2.2.3. Let F E be defined by (4.37) with 0 = 0o and let G z 
be defined as in (4.47). Then 

G , F ' = G z F f , , o + R ( e  ), where R(e)--->0 as ~-->0 (4.58) 

Proof. 

GEF~=(E-2G1 + r  2 + O 3 + cG4)'(FT,,I,o+ r + r 

= ~-2G1Fy.,o+ r  , + GzFT,,o ) + (G,F2 + GzF , + G3Fu,%) 

+eG3F , + cZG3F2 + cG4(Fy,,o + eFl + c2F2) 

The first term is zero since GIFU,,o = 0. The second term is 

G1F , + G2Fj; % = - G,G,-LG2Ff.% + G2FT,,~ ~ = 0 

Finally, 

G,F 2 + G2F l + G3Ff,,o = (Gzrf , ,o - G3Ff. % - G2F,) + G2F , + G3FT,~,o 

= GzF:, o 
and the proof is complete. [] 

Lemma 4.2.2.4. For f E C2(R 1),/~ ~ M q ,  

GzFf,,o(t~) = (Ok4~ 12)f '((00,/~))" ((0o/(00,  qo)), /L) 3 

+ f OOo/aX) o(x)dx I (4.59) 
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But 

Proof. By (4.47) and (4.41), 

GzF,,;Oo = G3Fjoo- 'G2F,,o] 

~G3Fj,,o = • f 2 a ~', o,t~)) (~+o/OX)2po(x)d x (4.60) 

To determine the first term we begin with 

G2Ff, oo(/*) = 0f ' ((~ o , /~))" <x,/z)<O~o/0X, /z) 

Then 

G,-'G2Ff,~o (i~) = - 0s  ~ f ' ((  T/p o , I~))( Ttx, I~)( T, (O~o/O x), I~) dt (4.61) 

Hence, 

G2G 1-1G2Ff,,~o(/z) 

t t  = -02(x ,  I~)s I f  ((q'o, I~))(O0o/Ox, t~)(T, x, ~)(Tt(O':;'o/~X), I ~) 

+f ' ( (~ 'o ,  i,))(O/Ox T,x, /~)(T,(aq, o /aX) , / , )  

+ f ' (<~o , / z ) ) (  T,x, iz)(O/Ox 7)(Oq~o/OX), I~) ] dt 

= - o ~ (  x, ~>f'((,~o, ~,))fo~< T,x, ~)(a/ax T,(a,o/aX), ~>dt 

Hence, 

~GaG~ - 'G2Ff,+o(#) = - 02( x, /~)f'((q~o,/~))(x, qo)" (~'0/(~0, qo), ~)2 

�9 s  ~,(aq, o/ax),  qo) at (4.62) 

Note that 

(1,Oqo/OX) = (1, po(1 + (2/o2)[(1 - O)x 2 -  x4]) )  

= 1 + (2/o2)[(1 - O)m 2 -  m4] = 0 

Therefore, 

( O/ax[ s  
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where u(x) := ~o(X)/~x. Let 

v(x)  := OV(x)/Ox, where 
(4.63) 

v(x)  := fo~ , , Iu (x )  - 2fo"U(X)po(X)dX]dt 
Then V(x) is an even function of x which satisfies the equation 

- So  V(x) = u(x) - l~u(y)po(y) dy (4.64) 

where J o  is defined as in (4.49). Solving for v( . )  using the same method as 
in (4.51) we obtain 

v(x) = - ( 4 0 / o 4 ) e x p { -  [(1 - 0 )x  2 -  �89 2} 

[/oXl> exp{E~'-0~,2- ~,43/o~} ,~z 

-~/~o~(f?x~{ I~-  0~,~- -~/1/o ~} ~) 

Hence 

v(x) = - ( 4 0 / o 4 ) ' e x p ( -  [(1 - 0 )x  2 -  �89 2} 

• (foX~, ox~IE~,-0~-~41/o~ } ~ 

_ ~fo~O~i E~,- 0),~- ~/1/o ~} ~,) 
Then 

fo%(X)qo(x) dx 

(4.65) 

-~ ~i !~'- ~ ~!/~ 
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In the last step we have used integration by parts and the fact that 

l i~rnx2"[s163 

=limx2.[s  s  )dy] x ~  o(y)dy-  m2 Po(Y 

1 =o 
since 

Therefore, 

s < x -3 .  e x p ( - x 4 ) ,  and 

~y2po(y ) dy < x -" exp( - x 4) 

foo%(X)qo(x) & 

= (40/o4)(Yoo O-'x4.expI[(1 - O ) x   x4]/o  } - m2/4) 
= - (0/3o4)(3m 2 - m4) = - ( -  k4)O/3rr 4 < 0 

Therefore for/~ = a �9 q0 

~G2G-%~%o( ~) = - 02( x, ~>f'((~o, ~>)(x, qo>(~'o/(Oo, qo>, ~}2 

x fv(x)qo(x) dx 
2 3 2 * = 0 a m2f (a(@o, qo>) X (-0k4/3o 4) 

= ( - k4)(O/12)a~/'(a(00, q0}) (4.66) 

and the proof of the lemma is complete. [] 
Step IV. Weak Compactness of the Processes: UN(. ; .). Let P* denote 

the probability measure on C([0, ~) ,  M(R l)) associated with the process 
(UN('; "),q~0> where e =  1IN. Let Uu(O;dx)=l~(dx ) and assume that 
/ ~ -  P0 -9 q0 as e$0. For K > 0, a stopping time r K is defined below in 
(4.71). Let p,,K denote the probability law of the process (UN(.; "),@0> 
stopped at the stopping time Lv- 

l . emma 4.2.2.5. The probability measures p~,K are weakly compact 
in the sense of weak convergence of probability measures on C([0, oo), 
Mg) .  
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Proof. Let F ~ := Ff,,o + eF l, where F 1 is defined by (4.41). Then 

MF,(t ) := F"[ U(l/~)(t)] - F~[ U(1/0(0)]-fotG~F~[ U(~/o(s)lds (4.67) 

is a p~,K martingale. Then 

Mr,(t)= Ff, q,o[ U(,/o(t) ] - Ff, q,o[ U(,/O(0)] 

+ cF , [  U(,/o(t)] - ,F , [  U(,/O(0)] 

--for { G2FI[ U(I/o(S) i + G3Ff,,~o [ U(l/O(S)] + cG3Fl[ U(1/o(s) ] 

+ eG4Ff,~,o[ U(,/o(s)] + e2G4F, } ds 

The increasing process associated with MF~ is given by 

( MF, ( t),Mr, ( t)} = f0t QF~ U(1/e)(s) ]dS (4.68) 

where 

QF' ( I -t) = G~( F~ )2 __ 2F~G~F ~ = o2[(f , ( ( r  ~}))2((01~0/0X)2 ' ]30}] 

By (4.61), 
0 0  t 

FI(~  ) = -G,-~G2FT,,o(~)= O fo f ( ( Ttq)o , ~} )( Ttx, t~}( Tt(Sq, o/SX), l~} dt 

and Fl(q0 ) = 0. 
Since both (U(~/o(-),q>o} and the limit (Z ,  Oo } are supported in 

C[0, oo), it suffices to show that the family ( (U( l /o( ' ) ,~ '0} :e  > 0) is 
relatively weakly compact as measures on D[0, oo), the space of right 
continuous functions having left limits. But to prove the latter it suffices to 
show that 

l imsupl~m ~ sup E[((U(1/o(t),(po}-(U(l/c)(s),g?o})2]J-sl=O (4.69) 
Is-tiE ~$o 8 

where Y ,  denotes the o-algebra o{ U(l/o(t):O < t < s}. Taking F~;,o(tX ) 
= (~o, ~}, we have 

FI(lx ) = 0 {Ttx, t~}(Tt(3~o/Sx ), ix}dt, and 

) - ) 

= - e { F , [  U(I/O (t)] - e l i  U(I/o(s )]} 

+ ~t( G2F,[ V(,/o(u)] + eG3r,[ U(,/o(u)] + e2G4F,[ U(1/o(u ) ]} du 

+ M (O - M (s) 
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Hence, 

Hence, 

[ (~)0' U(I/Q(t)) -- (~)o, U(l/e)(s)) ]2 

~< 4e 2" { F1[ U(,/,)(t)] - FI[ U(,/,)(s)]}2 

+ 4 I f  t( G2F,[ U(W,)(u)]du + eG3F,[ U(,/,)(u)] 

+ eZG4F1 [ U(I/~)(u)] ) du ]2 

+ 4 [ M ' ( t )  - M'(u)J 2 

E( ( ( q'o, U(~/,)(t) } - (~o, U[o/,)(s) ]} )21 ~-s ) 

E {4, o f f g(x, y)[ U(1/ e)( t; dx ) U( l / e)( t; dy ) 

-- U(1/()(S; dx)  U(1/e)(s; ~)] 

+4o3((0,o/0X) 2, po)(t - s) + 4 tI-I(U(1/,)(u))du ]J-~ 

(4.70) 
where 

u(.) is defined as in (4.51) and 

H(tt) := G2FI(I~) + ~G3FI(,) + r 
For K > 0, let 

z K := min(K, inf(t : max[(q~o, U(s)},(g(. ,  .), U(s) • U(s)}] /> K ) )  

(4.71) 

Inequality (4.70) implies that the probability measures p~,X on C[0, ~ )  
induced by the processes (00, U(1/~)(')) stopped at ~-x are weakly compact 
and the proof of the lemma is complete. �9 

Step V. Completion of the Proof of Theorem 4.2.2. By the weak 
compactness of the probability laws, p~,K, it follows that there exist weak 
limits pK with PI<(z(o)-- a �9 q0) = 1 where {Z(t): t/> 0) denotes the 
canonical limit process. To complete the proof of the theorem it remains to 
prove that any such limit law must coincide with the probability law 
induced by the process Z(.)  defined by (4.23) when stopped at ~'x. 
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For each e > 0 and function FI,~, ~ with f ~ Cg(R 1), 

F ' [  g(1/e)([)] -foot/~';CG, F'[ U(I/o(S)] ds (4.72) 
is a P"K-martingale. Therefore if ~s is a bounded 5s-measurable  function, 

(4.73) 

But by (4.58) 

G~F ~= GzFT,,o + R(e) (4.74) 

where the remainder term R [c, U(1/,) ( . )] --> 0 uniformly on [0,%]. It then 
follows from (4.73) and the weak convergence that for any weak limit of p~,K, 

= 0 (4.75) 

The martingale problem associated with the operator G z has a unique 
solution and the resulting Markov process has no explosions. Using this 
fact together with (4.75) and the results of Stroock and Varadhan (Section 
11.1) (54) we conclude that pK coincides with the probability law associated 
with the solution of the Gz-martingale problem when stopped at ~'~c and 
that the probability measures p,,K converge weakly to pK as e ~ 0 .  Since 
~-K~ m, with probability 1, for the limit process Z(.) ,  this also implies that 
P '  converge weakly to P, the probability law of Z(-)  in the sense of weak 
convergence of probability measures on C([O,T],Mq) for T <  oe. This 
completes the proof of Theorem 4.2.2. �9 

Proof of Corollary4.2.2. (a) Note that if gu(m;dx) has a weak 
limit as N ~  oe, then it is an equilibrium probability measure for Z(.  ; . ) .  
However, since Z(.  ; - )  has a unique equilibrium distribution, Z~(dx), it 
follows that such a limit must coincide with Z~(dx). Hence it suffices to 
prove that the equilibrium random signed measures Uu(ce;dx) are weakly 
compact in the topology of weak convergence of probability distributions 
on M -+ (R l). For this it suffices to show that for g E CK(R l), the family 
{( g, Uu(oO)) : N > 1 } is weakly compact. But if we denote the locations of 
the N particles at steady state by X 1, . . . ,  X N, 

(g, UN(m))=(N1/4/N) (g (X j ) -  E[ g(Xj)I) (4.76) 
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Now consider the random variables ([Xj, g(Xj)] : j  = 1 . . . . .  N }. The con- 

ditional law of g(X 0 . . . . .  g(XN) given )T N under the probability law PN(" ) 
given by (4.12) is the same as that with respect to 1-I;=lp(xj). By (4.19), 
N--I/2zN=IX J. is of order O(N 1/4) under the law PN(')" Then Richter's 
multidimensional local limit theorem for large deviations (see Appendix C 
for a statement of this result, the limiting conditional density function for 
(g ,  UN(~))  given XN when N1/2X N if of order O(N 1/4) can be computed. 
In particular it yields a limiting conditional limiting density 

lim pU(U [y) =p(U [y) (4.77) 
N---~ ov 

where ?N(" 1") is the conditional density for 

N 

N-I~2 E { g(Xj)  - Ejv[ g(Xj) ]  ) 
j = l  

conditioned on 
N 

N-1/2 Z Xj---- NI/4y 
j=l 

provided that fxg(x)po(x)}dx = 0, g( . )  is bounded and fg2(x)po(x)}dx 
> 0. Referring to Appendix C, only the terms involving Q3 and Q4 
contribute to the limiting conditional distribution of (g, UN(OO)) and the 
latter distribution is Gaussian. The existence of a limiting conditional 
density together with the weak compactness of N 1/4. R N yields the re- 
quired weak compactness of the family (g, UN(O0)) and the proof of (a) is 
complete. [] 

(b) In order to prove (b) it suffices to show that all moments of the 
empirical mean converge, that is, 

E((X, UN(OO))k)--~ E((x, Zoo) k) as N---~oo (4.78) 

In view of the weak convergence established in part (a), it suffices to 
establish uniform integrability, that is, 

lim supE N 1/4 (4.79) 

Using the results of (4.13), (4.14) it follows that for 0 < s o < 1, 

G(s) >1 cls 2 for Isl /> s o (4.80) 

G(s)=e2 s4+O(s 6) for I s l < s 0 ,  with c 2 > 0  (4.81) 

where cl,c 3 are constants and O(s 6) is bounded on Is] < s 0. Then (4.18) 
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together with (4.80) and (4.81) imply that 

N'/4" XN + W~ u ' / 4 ~ Z - I  " e x p [ - c 2  s4 + O(s6)/NI/2] 

~ Z  -1 . e x p ( -  N 1/2s2) 

Therefore, 

for Is I ~< N1/4s o 

for is1 ~ NI/4So 

(4.82) 

+ c4f_ x  exp(- U'/2x2)dx (4.83) 

The second term on the right-hand side of (4.83) goes to zero as N-~  ~ .  
Therefore for each positive integer k, 

�9 ~< K k < m (4.84) 

and the proof of (4.79) is complete. This completes the proof of Corollary 
4.2.2. �9 

APPENDIX A: PROOF OF THEOREM 2.4.1. 

A.1. Step h A Priori Bounds 

Let x (.) denote the solution of the first-order linear equation: 

dx( t ) /d t  = - f ( t ) x ( t )  + g(t), x(O) = x o 

Multiplying by the integrating factor exp[ftof(s)ds] we obtain 

We apply this to Eq. (2.23) with 

f ( t )  = [(0 - 1) + y2(t)]  

g(t) = ow'(t) + Om,(t) 

where w'(t) denotes the generalized derivative of w(t). Since exp[ffof(s)ds ] 
is differentiable, this computation proceeds by the usual rules of calculus. 
This yields 
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Integrating by parts we obtain 

y ( t ) =  x0exp[- fotf(s)ds l+  Ofootml(s)exp[ - fss t f(u)du l ds+ ow(t) 

-~e(~ ]fo t { w(s)[ ( 0 - 1 ) +  y2(s)If (1-~ 

Hence 

(A2) 

~0 t Ely(t)[  ~< Ixole(~ o), + 0 Iml(s)[e('-~ ds+ oE[w(t)[ 

+oE(  sup Iw(s ) l} ( l+e  '~ 
O<~s<<.t 

By the submartingale inequality, 

E ( sup [w(s)]) < E ( sup [w(s)[ all /2~ 2t 1/2 
O<s<t O<s<t ) 

Letting m + (t) -- Ely(t)[, we obtain 

m + ( t )  < Ixole(~-~ + 2otl/2 + Ofo'm+ (t)e(1-~ 

+ 2otl/2(1 + e (O-1)t) 

Therefore, for 0 < t < T, 0 4= 0, 

m + (t) < (glxol + 2orl/2)exp(O + Oe t(' ~ - 0l), 

g = max(l, e (1 - 0~ r) (A3) 

This implies that ml(t ) < m + (t) is bounded on [0, T]. Together with (A2) 
this also implies the continuity of ml(t ) and the nonexistence of explosions 
for the equation (2.22). 

Step I1: Picard Iteration 

Let y](t) denote the unique strong solution of 

dyl(t) = I --y~(t) +y,( t ) ]  dt + odw(t) - Oyl(t)dt + Oy(O) 

The fact that this equation (and those below) have unique strong solutions 
is established by using the Cameron-Martin-Girsanov change of probabil- 
ity formula together with the fact that the solution is nonexplosive (cf. 
Ikeda-Watanabe (29) or McKean(42)). 
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We now set up the iteration scheme: for n/> 1, 

yn+,(t) -- Yn+1(O) = fot[-- y3n+l(S) + (l -- O)yn+l(s) ] ds+ aw(t) 

+ Ofootm~")(s) ds 

m}~)(t) -- E[ y.(t)] 

(A4) 

This yields 

yo+ ,(t) - y.(t) = fo'(1 - o)E yo+ ,(s) - y.(s) 1 a,- fo~[,+ ,(,) - y~ (,) l d~ 

Since (y3 - -  X 3) = (y -- X)(y 2 + Xy + X 2) = ll (y __ X)[(X + y)2 + X 2 + y2], 

y.+l(t)  -- y . ( t )  = f0'(1 -- O)[ y.+,(S) --yn(S)] ds 

- fo' [ y .+  ,(~) - y . (~)  ] f ( s )  d~ 

y n + , ( o )  - y . ( O )  = o 

where f(s) -- �89 ( [y .+ l(s) + y.(s)] 2 + y.+ l(s) 2 + y.(s) 2} >10. Applying (A1) 

we obtain 

yn+,(t) - y~(t) = O fo te ( t - ' ) (~176  f f  f (u)du ] 

.imp~ m~~ 
Hence for 0 ~< t ~< T, 

]mln+l)(t) - mln)(t)] ~< Kfot[[m}')(s ) - mln-X)(s)][ds (A5) 

where K =  0max(1,eT(~ Thus for 0 < t ~< T, n /> 1, 

]m}"+O(t)- m}")(t)[ ~< K"T"/n!  

This implies that {m}~)(t):O ~< t ~< T} is Cauchy and the limit mt(t ) is 
continuous and bounded on [O,T]. Let y ( . )  denote the unique strong 
solution of the equation 

dy(t) = [ - y s ( t )  + (1 - O)y(t)] dt + odw(t)  + Om,(t)dt 
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By an argument similar to the above we can verify that 

IE[ y( t )  ] - m~")(t)l-<< K footlml(s) - m~n)(s)lds 

Then it follows that E[y(t)] = ml(t ) and the existence of a strong solution 
to (2.22) is established. 

Step II1: Un iqueness  

Let Yl(') and Y2(') denote two solutions of (2.22) and let m~O(t) 
= E [yl(t)] and m~2)(t) = E[y2(t)]. Then as above we can obtain 

Iml2)(t)-  m~')(t)l < gfo'lm~2)(s ) - m~~ ds 

Hence by Gronwall's inequality, m}2)(t)= m~~ thus establishing the 
uniqueness of the solution to (2.22). 

A.2. Existence 

L e t y ( . )  denote the solution of (2.22). If $ ~ J ,  It6's stochastic chain 
rule yields that 

t 1 0- 2 H S -.,I - + (y()) 

+ Om~(t)@'(y(s))] ds (A6) 

is a martingale. Let p(t; dx) denote the probability law of y(t). Then the 
martingale condition (A6) implies that p ( . ;  .) is a probability-measure- 
valued solution of the nonlinear equation (2.23). 

Uniqueness. Suppose thatp*( . ;  .) is a second solution of (2.23). Let 
m~'(t):= fxp*(t;dx).  Let y*( . )  denote the unique strong solution of the 
stochastic differential equation: 

dy*(t) = [y*( t )  3 + (1 - O)y*(t) ] dt + 0-dw(t) + Om~(t)dt 

By the uniqueness established in Step III, m~(t) = ml(t ). Therefore p*(. ; .) 
is a solution of the linear equation: 

0p*(t; . )10t  = ~a20~*(t;  . ) l~x  2 -  ~/0x[ (1  - 0 )x  - x3]p*(t ;  .) 

- Om,(t) Op*(t;- ) /Ox  (n7) 
Provided that ml(. ) is C a, it can be proved (cf. McKean (42)) that (A7) 
has a unique solution and that p*( t ;dx )=p( t ; x )dx ,  where p( t ;x )  is in 
C([0, co) • R 1). To verify that m1(. ) is C ~, first note that we can obtain a 
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estimate P(ly(t)] ) x)< c1" exp(-cax2),  where cl,c 2 are constants, for 
0 -<< t < T and Ixl >~ c3 (e.g., by comparison with an appropriate reflecting 
Brownian motion). This estimate allows us to extend the validity of (A6) to 
polynomials. Repeated application of (A6) then leads to an integral expres- 
sion for dkm~(t)/dt ~ for each k and this completes the proof that ml(. ) 

C ~. This completes the proof of (b). �9 

APPENDIX B: PROOF OF THEOREM 2.5.1 

Step I. Weak Compactness 

In order to prove that the processes are compact in the weak topology 
on C([0, m), M1(R l)) it suffices to prove that 

(B-i) SUPNSUPo<t<TE((XN(t), Ixl)) < ~, and 
(B-ii) for each ~ E CK(R l), the space of functions with compact 

support, (XN(.), @ are weakly compact in the topology of weak conver- 
gence of probability measures on C [0, oe). 

By a calculation similar to that of Step I of Appendix A we obtain for 
j = I , . . . , N  

F c t 2 ] xj(t) - -  expl- js (u  u expE - - l + owj( t) 

+ Oftx(r)exp[ frrtXf(u) du] exp[ ( 1 - O ) ( t - r )  l dr 

ooxpi(0 1 
t u 2 �9 s {wj(u)[(0- 1)+ 4(u)]exp[(l-O)u]explf " xj(v)clv])du 

(B1) 

N 

Let z(t):= (Xx(t), Ixl):= U- ' .  Z Ixj(t)l �9 Then from (B1) we obtain 
j = l  

z(t) < z(0)" exp[(1 - 0 ) ( t -  s)] + ~ ' 0 z ( r ) .  exp[(1 - O)( t -  r)] dr 

N 

+,Jl~(t)l  + oN -1" ~, sup [wj(u)[. {1 + exp[(O - l ) ( t -  s)]} 
j = l s < u < t  

02) 
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Taking expectations in (B2) and using Gronwall's inequality leads to (B-i). 
Similarly, 

Ixj(t)- xj(s)l < 0s exp[(1 - O ) ( t -  r)] dr + o lw j ( t ) -  wj(s)[ 

+ o  sup [wj(u)l. (1 + e x p [ ( 0 -  1 ) ( t -  s)])  
s < u < ~ t  

+ Ix/s)l I{exp[(1 - O ) ( t -  s)] - 1}1 

+ 15(')1 sup xT(u), exp[(1 - O)(t - s)] . ( t  - s) 
s<~u<.<t 

(B3) 
Then 

N 
(XN( t ) ,@ -- (XN(S), @ = N - ' .  ~] [ r  - O(xj(s))] 

j = l  

N 

.<< sup W(x)l N ' .  ~, [xj(t) - xj(s)l (B4) 
j=l 

Using (B1) an inequality similar to (B2) can be obtained for N -1.  
~y= 1x j(.  )2. This estimate together with (B3) and (B4) implies that { (X  N (.), 
~)  : N = 1,2, 3 . . . .  } are weakly compact in C([0, T]) for every T < oo and 
ep E C~:(R 1). This completes the proof of the weak compactness. [] 

Step II. Identification of the Limit 

Let PN denote the probability law of the probability-measure-valued 
process X N. In view of the weak compactness there exist convergent 
subsequences P~k ->-> P" It remains to prove that P is uniquely characterized 
as the solution of a martingale problem having a unique solution, namely, 
the probability law of the deterministic process { Y(t) : t >> 0). 

L e t f  ~ CK(Rn). Then by (2.13), 
n 

GNFu( I~) = • ( n (  �89 + [ (l - O)xj - xf]O/Oxj} 
j = I J R  " 

X f ( X l  . . . . .  Xn) fin (dx) 
n 

+ (~ ~=1 k~'~j ;Rn{O2/~x jOXk[ f (X . '  " ~ " 'Xn ) ] }  

x 8 ( 5  - x,~) ~,,_ , (ax)  
n 

+ o2,.= xo+ ,(O/ox. :(x, . . . . .  ] .n+ ,(.x> 
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Then 

lim @vFf(~) = + (  "[-[ O) --X 3j]o/Oxj} 

X f ( x  1 . . . . .  x.) /~. (dx) 

.+,L ~+l .O/Ox]f(x~.  x.)]/~.+l(dx) 
1 

= aFT(I~) (B5) 

Therefore the limit measure P on ~ must be a solution of the martingale 
problem associated with the martingale problem (G, D 0. But according to 
Theorem 2.4.1, this martingale problem has a unique solution. This com- 
pletes the proof of Theorem 2.5.1. �9 

APPENDIX C: RICHTER'S THEOREM ON LARGE DEVIATONS 

In this appendix we state the multidimensional local limit theorem for 
large deviations due to Richter (48) (see also Petrov(47)). 

Let X(1),X(2),X(3) . . . .  denote independent identically distributed 
m-dimensional random vectors with distribution function V(dx 1 . . . . .  dxm). 
Assume that all mixed second moments exist: 

oJ k := E { [ X j  (1 ) -  E(Xj . ( I ) ) ] [X ( 1 ) -  E(Xk(1))l ) 

2 := I loJ~ll, an m X m matrix 

Assume that D =- de tE  > 0. Let ~ = (x 1 . . . . .  Xm), V = (el . . . . .  Vm) and 

<v, ~> : =  E~= lx;~s. 
Theorem. Let E ( X  (1)) = 0 and let Z u := N 1/2. ~N=Ix(j)" Assume 

that 
(a) for N > N 0, Z N has a bounded density PzN(~), and 
(b) there exists a positive a such that for all v ~ R m with Ivjl < ~, the 

integral fnmexp((v,~))V(dli) converges. 
Then for all sufficiently large N and Ixjl > 1, Ixjl = o(N'/2), 

Pzu(~) /O(~)=exp(  N" ~k=3 Qk(~/N1/2)[I  + O([~I/NI/2)I  } ( e l )  

In (C1) ~(~) denotes the density of the m-dimensional Gaussian distribution 

0(4) = e x p ( -  !~.2 ~'-  1. iT  )/(2~)(1/2)m. D 1/2 

Qk(v) is a multilinear form: 

Q~(v) = ~ aj . . . .  j~vss " " " vjk 
Jb - - - ,Jk= 1 
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where the coefficients aj ,  . . . . .  Jk are computed from the joint cumulants of 
order less than or equal to k of the original distribution V(d~). 
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